Have a personal or library account? Click to login
Energy Recovery from a Non-Linear Electromagnetic System Cover

Energy Recovery from a Non-Linear Electromagnetic System

Open Access
|Apr 2018

References

  1. 1. Bedekar V., Oliver J., Priya S. (2009), Pen harvester for powering a pulse rate sensor, Journal of Physics D: Applied Physics, 42(10), 105105.10.1088/0022-3727/42/10/105105
  2. 2. Beeby S., Tudor M., White N. (2006), Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17(12), 175-195.10.1088/0957-0233/17/12/R01
  3. 3. Beeby S.P., Torah R.N. Tudor M.J. (2008), Kinetic energy harvesting. ACT Workshop on Innovative Concepts. ESA-ESTEC, 17, 1-10.
  4. 4. Doedel E., Oldeman B. (2012), Auto-07p: Continuation and bifurcation software for ordinary differential equations, Concordia University, Montreal, 1–266.
  5. 5. Earnshaw S. (1842). On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Transactions of the Cambridge Philosophical Society, 7, 97–112.
  6. 6. Gomand J., Remy G., Tounzi A., Barre P.J., Hautier J.P. (2007), Impact of permanent magnet field on inductance variation of a PMLSM, European Conference on Power Electronics and Applications, 1-10.10.1109/EPE.2007.4417589
  7. 7. Jonnalagadda A.S. (2007) Magnetic induction systems to harvest energy from mechanical vibrations, PhD thesis, Massachusetts Institute Engineering.
  8. 8. Joyce S. (2011) Development of an electromagnetic energy harvester for monitoring wind turbine blades, PhD thesis, Virginia Polytechnic.
  9. 9. Kecik K. (2015) Dynamics and control of an active pendulum system, International Journal of Non-linear Mechanics, 70, 63-72.10.1016/j.ijnonlinmec.2014.11.028
  10. 10. Kecik K., Brzeski P., Perlikowski P. (2017a) Non-linear dynamics and optimization of a harvester absorber system, International Journal of Structural Stability and Dynamics, 17(9), 1-15.10.1142/S0219455417400016
  11. 11. Kecik K., Mitura A. (2016), Nonlinear dynamics of a vibration harvest-absorber system. Experimental Study, Springer Proceedings in Mathematics & Statistics, Dynamical Systems: Modelling, 181, 197-208.10.1007/978-3-319-42402-6_17
  12. 12. Kecik K., Mitura A., Lenci S., Warminski J. (2017b), Energy harvesting from a magnetic levitation system, International Journal of Non-linear Mechanics, 94, 200-206.10.1016/j.ijnonlinmec.2017.03.021
  13. 13. Li Y.J., Dai Q., Zhang Y., Wang H., Chen Z., Sun R.X., Zheng J., Deng C.Y., Deng Z.G. (2016), Design and analysis of an electromagnetic turnout for the superconducting Maglev system Physica C: Superconductivity and its Applications, 528, 84-89.10.1016/j.physc.2016.07.021
  14. 14. Mann B., Sims N. (2010), On the performance and resonant frequency of electromagnetic induction energy harvesters, Journal of Sound and Vibration, 329(1-2), 1348–1361.10.1016/j.jsv.2009.11.008
  15. 15. Mann B.P. Sims N.D. (2009), Energy harvesting from the nonlinear oscillations of magnetic levitation, Journal of Sound and Vibration, 319(1-2), 515–530.10.1016/j.jsv.2008.06.011
  16. 16. Mann B.P., Owens B.A. (2010), Investigations of a nonlinear energy harvester with a bistable potential well, Journal of Sound and Vibration 329, 1215-1226.10.1016/j.jsv.2009.11.034
  17. 17. Mitcheson P.D. (2005), Analysis and optimisation of energy-harvesting micro-generator systems, University of London.
  18. 18. Mitcheson P.D., Green T.C., Yeatman E.M., Holmes A.S. (2004), Architectures for vibration-driven micropower generators, Journal of Microelectromechanical Systems, 13(3), 429-440.10.1109/JMEMS.2004.830151
  19. 19. Olaru R., Gherca R., Petrescu C. (2014), Analysis and design of a vibration energy harvester using permanent magnets, Revue Roumaine des Sciences Techniques - Serie Electrotechnique, 59(2), 131–140.
  20. 20. Qian N., Zheng B., Gou Y., Chen P., Zheng J., Deng Z. (2015), Study on the effect of transition curve to the dynamic characteristics of high-temperature superconducting maglev, Physica C: Superconductivity and its Applications, 519, 34-42.10.1016/j.physc.2015.08.007
  21. 21. Soares S.M.P., Ferreira J.A.F., Simoes J.A.O., Pascoal R., Torrao J., Xue X., Furlani E.P. (2016), Magnetic levitation-based electro-magnettic energy harvesting: a semi-analytical non-linear model for energy transduction, Scientific Reports 6, Article ID 18579.10.1038/srep18579
  22. 22. Sun R., Zheng J., Zheng B., Qian N., Li J., Deng Z. (2018), New magnetic rails with double-layer Halbach structure by employing NdFeB and ferrite magnets for HTS maglev, Journal of Magnetism and Magnetic Materials, 445, 44-48.10.1016/j.jmmm.2017.08.082
  23. 23. Williams C., Yates R. (1996), Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, 52 (1-3) 8–11.10.1016/0924-4247(96)80118-X
  24. 24. Zhou D, Yu P., Wang L, Li J. (2017), An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities, Journal of Sound and Vibration, 408(10), 331-350.10.1016/j.jsv.2017.07.037
  25. 25. Zhu H., Khiang Pang Ch., Joo Teo T. (2017), Analysis and control of a 6 DOF maglev positioning system with characteristics of end-effects and eddy current damping, Mechatronics, 47, 183-194.10.1016/j.mechatronics.2016.12.004
DOI: https://doi.org/10.2478/ama-2018-0002 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 11 - 18
Submitted on: Apr 5, 2017
Accepted on: Mar 1, 2018
Published on: Apr 4, 2018
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Krzysztof Kęcik, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.