Have a personal or library account? Click to login
Numerical Analysis of Temperature Field in a Disc Brake at Different Cover Angle of the Pad Cover

Numerical Analysis of Temperature Field in a Disc Brake at Different Cover Angle of the Pad

By: Piotr Grześ  
Open Access
|Jan 2015

References

  1. 1. Adamowicz A., Grzes P. (2011a), Analysis of disc brake temperature distribution during single braking under nonaxisymmetric load, Applied Thermal Engineering, Vol. 31, No. 6-7, 1003-1012.10.1016/j.applthermaleng.2010.12.016
  2. 2. Adamowicz A., Grzes P. (2011b), Influence of convective cooling on a disc brake temperature distribution during repetitive braking, Applied Thermal Engineering, Vol. 31, No. 14-15, 2177-2185.10.1016/j.applthermaleng.2011.05.016
  3. 3. Baranowski P., Damaziak K., Małachowski J. (2013) Brake system studies using numerical methods, Maintenance and Reliability, Vol. 15, No. 4, 337-342.
  4. 4. Baranowski P., Damziak K., Malachowski J., Mazurkiewicz L., Kastek M., Piatkowski T., Polakowski H. (2011), Experimental and numerical tests of thermo-mechanical processes occurring on brake pad lining surfaces, Surface Effects and Contact Mechanics X, Computational Methods and Experiments, Edited By: J.T.M. DE HOSSON, University of Groningen, Netherlands and C.A. Brebbia, Wessex Institute of Technology, UK, Vol. 71, 15-24.
  5. 5. Chichinadze A. V., Matveevski R.M., Braun E. P. (1986), Materials in tribotechnics non-stationary processes, Nauka, Moscow (in Russian).
  6. 6. COMSOL Multiphysics 4.4, Heat Transfer Module User’s Guide, 1998-2013.
  7. 7. Ghadimi B., Kowsary F., Khorami M. (2013a) Thermal analysis of locomotive wheel-mounted brake disc, Applied Thermal Engineering, Vol. 51, No. 1-2, 948-952.10.1016/j.applthermaleng.2012.10.051
  8. 8. Ghadimi B., Sajedi R., Kowsary F. (2013b) 3D investigation of thermal stresses in a locomotive ventilated brake disc based on a conjugate thermo-fluid coupling boundary conditions, International Communications in Heat and Mass Transfer, Vol. 49, 104-109.10.1016/j.icheatmasstransfer.2013.10.009
  9. 9. Ścieszka S. F. (1998) Friction brakes - material, structural and tribological problems, ITE, Radom (in Polish).
  10. 10. Scieszka S. F., Zolnierz M. (2014), Experimental and numerical investigations of thermo-mechanical instability of the industrial disc brakes, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 228, No. 5, 567-576.
  11. 11. Talati F., Jalalifar S. (2008), Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes, Journal of Applied Sciences, Vol. 8, No. 20, 3583-3592.
  12. 12. Talati F., Jalalifar S. (2009), Analysis of heat conduction in a disk brake system, Heat and Mass Transfer, Vol. 45, 1047-1059.
  13. 13. Yevtushenko A.A., Grzes P. (2010), The FEM-modeling of the frictional heating phenomenon in the pad/disc tribosystem (a review). Numerical Heat Transfer Part A-Applications, Vol. 58, 207-226.10.1080/10407782.2010.497312
  14. 14. Yevtushenko A.A., Grzes P. (2014) Mutual influence of the velocity and temperature in the axisymmetric FE model of a disc brake, International Communications in Heat and Mass Transfer, Vol. 57, 341-346.
DOI: https://doi.org/10.2478/ama-2014-0033 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 185 - 188
Published on: Jan 27, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Piotr Grześ, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.