Have a personal or library account? Click to login
The Impact of the FLC Controller’s Settings on the Precision of the Positioning of a Payload Transferred by a Mobile Crane Cover

The Impact of the FLC Controller’s Settings on the Precision of the Positioning of a Payload Transferred by a Mobile Crane

Open Access
|Jan 2015

References

  1. 1. Al-Humaidi H. M., Hadipriono Tan F. (2009), Mobile crane safe operation approach to prevent electrocution using fuzzy-set logic models, Advances in Engineering Software, 40, 686-696.10.1016/j.advengsoft.2008.11.016
  2. 2. Cho S. K., Lee H. H. (2002), A fuzzy-logic antiswing controller for three-dimensional overhead cranes, ISA Transactions, 41, 235-243.10.1016/S0019-0578(07)60083-4
  3. 3. Hong K. S., Ngo Q. H. (2012), Dynamics of the container crane on a mobile harbor, Ocean Engineering, 53, 16-24.10.1016/j.oceaneng.2012.06.013
  4. 4. Janusz J., Kłosiński J. (2008), Fuzzy controlling of a mobile crane ensuring stable work, Acta Mechanica Slovaca, 3-C, 215-222.
  5. 5. Jerman B., Podrzaj P., Kramar J. (2004), An investigation of slewing-crane dynamics during slewing motion - development and verification of a mathematical model, International Journal of Mechanical Sciences, 46, 729-750.10.1016/j.ijmecsci.2004.05.006
  6. 6. Ju F., Choo Y. S. Cui F. S. (2006),Dynamic response of tower crane induced by pendulum motion of the payload, International Journal of Solids and Structures, 43, 376-389.10.1016/j.ijsolstr.2005.03.078
  7. 7. Kłosiński J. (2005), Swing-free stop control of the slewing motion of the mobile crane, Control Engineering Practice, 13, 451-460.10.1016/j.conengprac.2004.04.007
  8. 8. Kłosiński J. Majewski L. (2004), Numerical investigations of the system with fuzzy logic controller used to controlling the working motion of mobile crane, Proceedings of the IX Conference on the TMM, Liberec, 445-450.
  9. 9. Kłosiński J., Janusz J. (2009), Control of operational motions of a mobile crane under a threat of loss of stability, Solid State Phenomena, Vol.144, 77-82.
  10. 10. Kłosiński J. (2011), Fuzzy logic-based control of a mobile crane slewing motion, Mechanics and Mechanical Engineering, Vol. 15, No 4, 73-80.
  11. 11. Lee T. Y., Lee S. R. (2002), Anti-sway and position 3D control of the nonlinear crane system using fuzzy algorithm, Inter. Journal of the Korean Society of Precision Engineering, Vol.3, No.1, 66-75.
  12. 12. Liu D., Yi J., Zhao D., Wang W. (2005), Adaptive sliding mode fuzzy control for a two-dimensional overhead crane, Mechatronics, 15, 505-522.10.1016/j.mechatronics.2004.11.004
  13. 13. Mahfouf M., Kee C. H., Abbod M. F., Linkens D. A. (2000), Fuzzy logic-based anti-sway control design for overhead cranes, Neural Computing & Applications, 9, 38-43.10.1007/s005210070033
  14. 14. Neupert J., Arnold E., Schneider K., Sawodny O. (2010), Tracking and anti-sway control for boom cranes, Control Engineering Practice, 18, 31-44.10.1016/j.conengprac.2009.08.003
  15. 15. Pędrak T., Kłosiński J. (2009), Control of mobile crane by means of fuzzy logic controller, Solid State Phenomena, Vol.144, 202-207.
  16. 16. Schaub H. (2008), Rate-based ship-mounted crane payload pendulation control system, Control Engineering Practice, 16, 132-145.10.1016/j.conengprac.2007.04.011
  17. 17. Smoczek J. (2014), Fuzzy crane control with sensorless payload deflection feedback for vibration reduction, Mechanical Systems and Signal Processing, 46, 70-81.10.1016/j.ymssp.2013.12.012
  18. 18. Smoczek J., Szpytko J. (2012), Design of gain scheduling anti-sway controller using genetic fuzzy system, 17th IFAC Int. Conf. on Methods and Models in Automation and Robotics MMAR, 573-578.
  19. 19. Smoczek J., Szpytko J., Hyla, P. (2013), The anti-sway crane control system with using dynamic vision system, Solid State Phenomena, 198, 589-593.10.4028/www.scientific.net/SSP.198.589
  20. 20. Sochacki W. (2007), The dynamic stability of a laboratory model of a truck crane, Thin-Walled Structures, 45, 927-930.10.1016/j.tws.2007.08.023
  21. 21. Solihin M., Wahyudi I., Legowo A. (2010), Fuzzy-tuned antiswing control of automatic gantry crane, Journal of Vibration and Control, 16(1), 127-145.10.1177/1077546309103421
  22. 22. Terashima K., Shen Y., Yano K. (2007), Modeling and optimal control of a rotary crane using the straight transfer transformation method, Control Engineering Practice, 15, 1179-1192.10.1016/j.conengprac.2007.02.008
  23. 23. Tomczyk J., Cink J., Kosucki A. (2014), Dynamics of an overhead crane under a wind disturbance condition, Automation in Construction, 42, 100-111.10.1016/j.autcon.2014.02.013
  24. 24. Yi J., Yubazaki N., Hirota K. (2003), Anti-swing and positioning control of overhead traveling crane, Information Sciences, 155,19-4210.1016/S0020-0255(03)00127-0
DOI: https://doi.org/10.2478/ama-2014-0032 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 181 - 184
Published on: Jan 27, 2015
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Jacek Kłosiński, Jarosław Janusz, Rafał Nycz, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.