Have a personal or library account? Click to login

Some Differential Equations of Elasticity and their Lie Point Symmetry Generators

Open Access
|Aug 2014

References

  1. 1. Azad H., Mustafa M. T., Arif A. F. M. (2010), Analytic Solutions of Initial-Boundary-Value Problems of Transient Conduction Using Symmetries, Applied Mathematics and Computation, Vol. 215, 41324140.
  2. 2. Bluman G. W., Cole J. D. (1974), Similarity Methods for Differential Equations, Springer-Verlag, New York, 1974.10.1007/978-1-4612-6394-4
  3. 3. Champagne B., Hereman W., Winternitz P. (1991), The Computer Calculation of Lie Point Symmetries of Large Systems of Differential Equations, Computer Physics Communications, Vol. 66, 319-340.
  4. 4. Drew M. S., Kloster S. (1989), Lie Group Analysis and Similarity Solutions for the Equation 2u2x2+2u2y2+2(eu)2z2=0, Nonlinear Analysis, Theory Methods Applications, Vol. 13, No. 5, 1989, 489505.
  5. 5. Euler N., Steeb W.-H. (1992), Continuous Symmetries, Lie Algebras and Differential Equations, Brockhaus AG, Mannheim.
  6. 6. Head A. K. (1993), LIE a PC Program for Lie Analysis of Differential Equations, Computer Physics Communications, Vol. 71, 241-248.
  7. 7. Head A. K. (1996), Instructions for Program LIE ver. 4.5, CSIRO, Australia.
  8. 8. Lie S. (1891), Vorlesungen iiber Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig.
  9. 9. Lie S. (1896), Geometrie der Beriihrungstransformationen, Teubner, Leipzig.
  10. 10. Olver P. J. (1986), Applications of Lie Groups to Differential Equations, Springer-Verlag, New York.10.1007/978-1-4684-0274-2
  11. 11. Sansour C., Bednarczyk H. (1991), Shells at Finite Rotations with Drilling Degrees of Freedom, Theory and Finite Element Formulation, In: Glowinski R., Ed., Computing Methods in Applied Sciences and Engineering, Nova Sci. Publish., New York, 163-173.
  12. 12. Sansour C., Bednarczyk H. (1995), The Cosserat Surface as a Shell Model, Theory and Finite-Element Formulation, Computer Methods in Applied Mechanical Engineering, Vol. 120, 1-32.
  13. 13. Sansour C., Bufler H. (1992), An Exact Finite Rotation Shell Theory, its Mixed Variational Formulation, and its Finite Element Implementation, International Journal for Numerical Methods in Engineering, Vol. 34, 73-115.
  14. 14. Schwarz F. (1982), Symmetries of the Two-Dimensional Korteweg-de Vries Equation, Journal of the Physical Society of Japan, Vol. 51, No. 8, 2387-2388.
  15. 15. Schwarz F. (1984), Lie Symmetries of the von Karman Equations, Computer Physics Communications, Vol. 31, 113-114.
  16. 16. Schwarz F. (1988), Symmetries of Differential Equations from Sophus Lie to Computer Algebra. SIAM Review, Vol. 30, No. 3, 450481.
  17. 17. Sherring J., Head A. K., Prince G. E. (1997), DIMSYM and LIE: Symmetry Determination Packages. Algorithms and Software for Symbolic Analysis of Nonlinear Systems, Mathematical and Computer Modelling, Vol. 25, No. 8-9, 153-164.10.1016/S0895-7177(97)00066-6
  18. 18. Simo J. C., Fox D. D. (1989), On a Stress Resultant Geometrically Exact Shell Model, Part I.: Formulation and Optimal Parametrization, Computer Methods in Applied Mechanics and Engineering, Vol. 72, 267-304.10.1016/0045-7825(89)90002-9
  19. 19. Vu K. T., Jefferson G. F., Carminati J. (2012), Finding Higher Symmetries of Differential Equations Using the MAPLE Package DESOLVII, Computer Physics Communications, Vol. 183, No. 4, 1044-1054.
DOI: https://doi.org/10.2478/ama-2014-0018 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 99 - 102
Published on: Aug 10, 2014
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2014 Jozef Bocko, Iveta Glodová, Pavol Lengvarský, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.