2. Blacha Ł, Karolczuk A., Bański R., Stasiuk P. (2011a), Experimental Study of Fatigue Life of Cruciform Welded Joints with Reference to Scale Effect, Acta Mechanica et Automatica, Vol 5, No.3, 16-20 (in Polish).
3. Blacha Ł, Karolczuk A., Łagoda T. (2011b), Modeling of Stress in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations, Materials Testing, vol 53, 339-343.10.3139/120.110234
4. Chapetti M.D., Otegui J.L. (1995), Importance of Toe Irregularity for Fatigue Resistance of Automatic Welds, International Journal of Fatigue, Vol. 17, 531-538.
5. Dang Van K. (1993), Macro-micro Approach in High-Cycle Multiaxial Fatigue, In Advances in Multiaxial Fatigue. (Edited by McDowell, D.L. and Ellis, R.) American Society for Testing and Materials STP 1191. Philadelphia, 120-130.
7. Hou C-Y. (2007), Fatigue Analysis of Welded Joints with the aid of Real Three-Dimensional Weld Toe Geometry, International Journal of Fatigue, 29, 772-785.10.1016/j.ijfatigue.2006.06.007
8. Karolczuk A. (2008), Non-local Area Approach to Fatigue Life Evaluation under Combined Reversed Bending and Torsion, International Journal of Fatigue, 30, 1985-1996.10.1016/j.ijfatigue.2008.01.007
9. Karolczuk A., Blacha L. (2011), Application of the Weakest Link Concept to Fatigue Analysis of Welded Joints, Acta Mechanica et Automatica, Vol.5 No. 3, 51-54 (in Polish).
11. Matake T. (1977), An Explanation on Fatigue Limit under Combined Stress. Bulletin of the The JapanSociety of Mechanical Engineers 20, 257-263.10.1299/jsme1958.20.257
12. Stewart W.J. (2011), Probability, Markov Chains, Queues, and Simulation. The Mathematical Basis of Performance Modeling. Princeton University Press, 105.