1. Baratto M., Cervera Ch., Jacono M. (2004), Analysis of Adequacy of a Force Platform for Stabilometric Clinical Investigations, Mediterranean Conference on Measurement, 207-211.
3. Derlatka M. (2012), Human Gait Recognition Based on Signals from Two Force Plates, Lecture Notes in Computer Science, Vol. 7268: Artificial Intelligence and Soft Computing, Springer-Verlag, 251-258.
4. Dichgans J., Mauritz K.H., Allum J.H.J., Brandt T. (1976), Postural Sway in Normals and Ataxic Patients: Analysis of the Stabilizing and Destabilizing Effects of Vision, Agressologie, 17, 15-24.
6. Gage W.H., Winter D.A., Frank J.S., Adkin A.L. (2004), Kinematic and Kinetic Validity of the Inverted Pendulum Model in Quiet Standing, Gait Posture 19, 124-132.10.1016/S0966-6362(03)00037-7
8. Michalak K., Jaskowski P. (2002), Dimensional Complexity of Posturographic Signals: I. Optimization of Frequency Sampling and Recording Time, Curr Topics in Biophys, 26(2), 235-244.
9. Nashner L.M. (1993), Computerized Dynamic Posturography in G. P. Jacobsen; C. W. Newman; and J. M. Kartush (eds.), Handbook of Balance Function Testing, Mosby-Year Book: Chicago, IL, 309-323.
10. Soochan K., Mijoo K. Nambom K., Sungmin K., Gyucheol H., (2012), Quantification and Validity of Modified Romberg Tests Using Three-Axis Accelerometers, Green and Smart Technology with Sensor Applications, Communications in Computer and Information Science, Vol. 338, 254-261.
11. Thurner S., Mittermaier C., Hanel R., Ehrenberger K. (2000), Scaling violation phenomena and fractality in the Human Posture Control System, Physical Review E, 62(3).10.1103/PhysRevE.62.4018