Have a personal or library account? Click to login
Shape Identification in Nonlinear Boundary Problems Solved bby Pies Method Cover

Shape Identification in Nonlinear Boundary Problems Solved bby Pies Method

Open Access
|Jul 2014

References

  1. 1. Ameen M. (2001), Boundary element analysis. Theory and programming, Alpha Science International Ltd.
  2. 2. Aparicio N. D., Pidcock M. K. (1996), The boundary inverse problem for the Laplace equation in two dimensions, Inverse Problems, 12, 565-577.10.1088/0266-5611/12/5/003
  3. 3. Bołtuć A., Zieniuk E. (2011a), Modeling domains using Bézier surfaces in plane boundary problems defined by the Navier-Lame equation with body forces, Engineering Analysis with Boundary Elements, 35, 1116-1122.10.1016/j.enganabound.2011.04.005
  4. 4. Bołtuć A., Zieniuk E. (2011b), PIES in problems of 2D elasticity with body forces on polygonal domains, J. Theor. Appl. Mech., 49/2, 369-384.
  5. 5. Cerrolaza M., Annicchiarico W., Martinez M. (2000), Optimization of 2D boundary element models using B-splines and genetic algorithms, Engineering Analysis with Boundary Elements, 24, 427-440.10.1016/S0955-7997(00)00006-0
  6. 6. Cholewa R., Nowak A. J., Bialecki R. A., Wrobel L. C. (2002), Cubic Bézier splines for BEM heat transfer analysis of the 2-D continuous casting problems, Computational Mechanics 28, 282-290.10.1007/s00466-001-0288-5
  7. 7. Durodola J. F., Fenner R. T. (1990), Hermitian cubic boundary elements for two-dimensional potential problems, International Journal for Numerical Methods in Engineering, 30/5, 1051-1062.10.1002/nme.1620300507
  8. 8. Farin G. (1990), Curves and Surfaces for computer Aided Geometric Design, Academic Press Inc., San Diego.10.1016/B978-0-12-460515-2.50020-2
  9. 9. Foley J., van Dam A., Feiner S., Hughes J., Phillips R. (1994), Introduction to Computer Graphics, Addison-Wesley.
  10. 10. Goldberg D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, Massachusetts.
  11. 11. Ligget J. A., Salmon J. R. (1981), Cubic spline boundary element, International Journal for Numerical Methods in Engineering, 17, 543-556.10.1002/nme.1620170405
  12. 12. Liu G.R., Han X. (2003), Computational inverse techniques in nondestructive evaluation, CRC Press LLC.10.1201/9780203494486
  13. 13. Michalewicz Z. (1996), Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin.10.1007/978-3-662-03315-9
  14. 14. Nowak I., Nowak A. J., Wrobel L. C. (2002) Identification of phase change front by Bézier splines and BEM, International Journal of Thermal Sciences, 41, 492-499.10.1016/S1290-0729(02)01342-X
  15. 15. Rus G., Gallego R. (2002), Optimization algorithms for identification inverse problems with the boundary element method, Engineering Analysis with Boundary Elements, 26, 315-327.10.1016/S0955-7997(02)00008-5
  16. 16. Sen D. (1995), A cubic-spline boundary integral method for twodimensional free-surface flow problems. International Journal for Numerical Methods in Engineering, 38/11, 1809-1830.10.1002/nme.1620381103
  17. 17. Tikhonov A.N., Arsenin V.Y. (1977), Solution of Ill-posed problems, John Wiley & Sons, New York.
  18. 18. Wall M. (1996), GAlib: A C++ Library of Genetic Algorithm Components, version 2.4, Mechanical Engineering Department, Massachusetts Institute of Technology (http://lancet.mit.edu/ga/).
  19. 19. Zhu T., Zhang J., Atluri N. (1998), A meshless local boundary integral equation (LBIE) method for solving nonlinear problems, Computational Mechanics, 22, 174-186.10.1007/s004660050351
  20. 20. Zieniuk E. (2007), Modelling and effective modification of smooth boundary geometry in boundary problems using B-spline curves, Engineering with Computers, 23/1, 39-48.10.1007/s00366-006-0040-z
  21. 21. Zieniuk E., Bołtuć A. (2006), Bézier curves in the modeling of boundary geometry for 2D boundary problems defined by Helmholtz equation, Journal of Computational Acoustics, 14/3, 353-367.10.1142/S0218396X06003098
  22. 22. Zieniuk E., Bołtuć A. (2010), Iterative solution of linear and nonlinear boundary problems using PIES, Lecture Notes in Computer Science, 6067, 136-145.10.1007/978-3-642-14390-8_15
  23. 23. Zienkiewicz O. (1977), The Finite Element Methods, McGraw-Hill, London.
DOI: https://doi.org/10.2478/ama-2014-0003 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 16 - 21
Published on: Jul 2, 2014
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Eugeniusz Zieniuk, Agnieszka Bołtuć, Krzysztof Szerszeń, published by Bialystok University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.