Have a personal or library account? Click to login
EXPERIMENTAL SETUP FOR TESTING ROTARY MR DAMPERS WITH ENERGY HARVESTING CAPABILITY Cover

EXPERIMENTAL SETUP FOR TESTING ROTARY MR DAMPERS WITH ENERGY HARVESTING CAPABILITY

Open Access
|Mar 2014

References

  1. 1. An J., Kwon D. S. (2003), Modeling of a Magnetorheological Actuator Including Magnetic Hysteresis, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.4352&rep=rep1&type=pdf.
  2. 2. Li Z., Zhuo L., Luhrs G., Lin L., Qin Y. (2013), Electromagnetic Energy-Harvesting Shock Absorbers: Design, Modeling and Road Tests. IEEE Transactions on Vehicular Technology, Vol. 62, no.3, 1065−1074.
  3. 3. Młot A. (2007), Structural pulsation dampening methods of the electromechanical torque in a brushless DC motor with permanent magnets, PhD thesis. Opole University of Technology, Faculty of electrical engineering, Automatic control and informatics. (in Polish)
  4. 4. Sapiński B., Krupa S. (2011), Rotary transducer of mechanical energy into electrical energy, Application for the patent no. P−395 787. (in Polish)
  5. 5. Sapiński B. (2011), Experimental study of self-powered and sensing MR damper-based vibration control system. Smart Materials and Structures, Vol. 20, 105012.10.1088/0964-1726/20/10/105007
  6. 6. Sapiński B., Bydoń S. (2002), Application of Magnetorheological Fluid Brake to Shaft Position Control in Induction Motor, Pneumatyka, Vol.3, no.34, 27-29. (in Polish)
  7. 7. Sapiński B., Szydło Z. (2013), Magnetorheological damper for torsional vibration with electromechanical rotary transducer. Application for the patent no. P‒403 371 (in Polish)
  8. 8. Vavreck A. N., Ho Ch. H. (2005), Characterization of a commercial magnetorheological brake/damper in oscillatory motion, Smart Structures and Materials: Damping and Isolation, 256−267.10.1117/12.599156
  9. 9. Wang Z. H., Chen, Z. Q. and Spencer, B. F. (2009), Self-powered and sensing control system based on MR damper, presentation and application, Proc. of SPIE on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 7292, 729240.
  10. 10. Wang D. H., Bai X. X.(2013), A magnetorheological damper with an integrated self-powered displacement sensor. Smart Materials and Structures, Vol. 22, 075001.10.1088/0964-1726/22/7/075001
  11. 11. Wang D. H., Bai X. X., Liao W. H.(2010), An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing. Smart Materials and Structures, Vol.19, 105008.10.1088/0964-1726/19/10/105008
  12. 12. Zhu S. Y., Shen W. A., Xu Y. L., Lee W. C.(2012), Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing, Engineering Structures, Vol. 34, 198−212.
  13. 13. http://www.baldor.com/
  14. 14. http://openi.nlm.nih.gov/detailedresult.php?img=3251984_sensors1111305f22&query=the&fields=all&favor=none&it=none&sub=none&uniq=&sp=none&req=4&simCollection=3142198_1477-7525-9-44-1&npos=86&prt=3
  15. 15. http://www.ktr.com/de/home.htm
  16. 16. http://www.ni.com/pdf/manuals/374068f.pdf
  17. 17. http://www.ni.com/pdf/manuals/374188d.pdf
  18. 18. http://www.ni.com/pdf/manuals/374068f.pdf
DOI: https://doi.org/10.2478/ama-2013-0041 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 241 - 244
Published on: Mar 11, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Bogdan Sapiński, Marcin Węgrzynowski, published by Bialystok University of Technology
This work is licensed under the Creative Commons License.