Have a personal or library account? Click to login
DEPENDENCE OF CREEP FAILURE PROBABILITY ON THE SIZE OF METALLIC SPECIMENS Cover

DEPENDENCE OF CREEP FAILURE PROBABILITY ON THE SIZE OF METALLIC SPECIMENS

By: Krzysztof Nowak  
Open Access
|Jan 2014

References

  1. 1. Bažant Z.P. (1984), Size Effect in Blunt Fracture: Concrete, Rock, Metal, J. Eng. Mech., 110, 518-535.
  2. 2. Bažant Z.P. (1999), Size effect on structural strength: a review, Archive of Applied Mechanics, 69, 703-725.10.1007/s004190050252
  3. 3. Bodnar, A., Chrzanowski, M. (2002), On creep rupture of rectangular plates, ZAMM, 82, 201-205.10.1002/1521-4001(200203)82:3<;201::AID-ZAMM201>3.0.CO;2-G
  4. 4. Carpinteri A., Spagnoli A. (2004), A fractal analysis of size effect on fatigue crack growth, Int. J. of Fatigue, 26, 125-133.10.1016/S0142-1123(03)00142-7
  5. 5. Carpinteri A., Spagnoli A., Vantadori S. (2002), An approach to size effect in fatigue of metals using fractal theories, Fatigue Fract.Engng. Mater. Struct., 25, 619-627.
  6. 6. Carpinteri A., Spagnoli A., Vantadori S. (2009), Size effect in S-N curves: A fractal approach to finite-life fatigue strength, Int. J. of Fatigue, 31, 927-933.10.1016/j.ijfatigue.2008.10.001
  7. 7. Carpinteri A., Spagnoli A., Vantadori S. (2010), A multifractal analysis of fatigue crack growth and its application to concrete, Eng.Fract. Mech., 77, 974-984.
  8. 8. Chrzanowski M. (1972), On the Possibility of Describing the Complete Process of Metallic Creep, Bull. Ac. Pol. Sc. Ser. Sc.Techn., XX, 75-81.
  9. 9. Farris J.P., Lee J. D., Harlow D. G., Delph T.J. (1990), On the scatter in creep rupture times, Metallurgical and Materials Transactions, 21A, 345-352.10.1007/BF02782414
  10. 10. Feltham P., Meakin J.D. (1959), Creep in Face-Centred Cubic Metals with Special Reference to Copper, Acta Metallurgica, 7, 614-627.10.1016/0001-6160(59)90131-2
  11. 11. Garofalo F., Whitmore R.W., Domis W.F., Gemmingen F. (1961), Creep and creep-rupture relationships in an austenitic stainless steel, Trans. Metall. Soc. AIME, 221, 310-319.
  12. 12. Hayhurst D.R. (1974), The effects of test variables on scatter in high-temperature tensile creep-rupture data, International Journal of Mechanical Sciences, 16, 829-841.10.1016/0020-7403(74)90041-1
  13. 13. Kocańda S., Szala J. (1991), Podstawy obliczeń zmęczeniowych, PWN, Warszawa (in Polish).
  14. 14. Monkman F.C., Grant N.J. (1956), An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Test, Proc. ASTM, 56, 593-620.
  15. 15. Nowak K. (2011), Uncertainty of lifetime for CAFE creep damage model, Computer Methods in Materials Science, 11, 315-323.
  16. 16. Raabe D. (2002), Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Ann. Review of Materials Research, 32, 53-76.10.1146/annurev.matsci.32.090601.152855
  17. 17. Weibull W. (1939), The Phenomenon of Rupture in Solids, Proceedings of Royal Swedish Institute for Engineering Research, 153, 5-55.
  18. 18. Yatomi M., Nikbin K.M., O'Dowd N.P. (2003), Creep crack growth prediction using a damage based approach, International Journal of Pressure Vessels and Piping, 80, 573-583.10.1016/S0308-0161(03)00110-8
DOI: https://doi.org/10.2478/ama-2013-0028 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 166 - 169
Published on: Jan 22, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Krzysztof Nowak, published by Bialystok University of Technology
This work is licensed under the Creative Commons License.