Have a personal or library account? Click to login
AN ANTICRACK IN A TRANSVERSELY ISOTROPIC SPACE Cover

AN ANTICRACK IN A TRANSVERSELY ISOTROPIC SPACE

Open Access
|Jan 2014

References

  1. 1. Berezhnitskii L.T., Panasyuk V.V. , Stashchuk N.G. (1983), The Interaction of Rigid Linear Inclusions and Cracks in a Deformable Body (in Russian), Naukova Dumka, Kiev.
  2. 2. Chaudhuri R.A. (2003), Three-dimensional asymptotic stress field in the vicinity of the circumference of a penny-shaped discontinuity, International Journal of Solids and Structures, Vol. 40, 3787-3805.
  3. 3. Chaudhuri R.A. (2012), On three-dimensional singular stress field at the front of a planar rigid inclusion (anticrack) in an orthorhombic mono-crystalline plate, International Journal of Fracture, Vol. 174, 103-126.
  4. 4. Ding H., Chen W., Zhang L. (2006), Elasticity of Transversely Isotropic Materials, Solid Mechanics and its Applications, Vol. 126, Springer, The Netherlands.
  5. 5. Erdelyi A. (1954), Tables of Integral Transforms, Vol.1, McGraw-Hill, New York.
  6. 6. Fabrikant V.I. (1989), Applications of Potential Theory in Mechanics: A Selection of New Results, Kluwer Academic Publishers, Dordrecht.
  7. 7. Fabrikant V.I. (1991), Mixed Boundary Value Problems of Potential Theory and their Applications, Kluwer Academic Publishers, Dordrecht.
  8. 8. Kaczyński A. (1993),On the three-dimensional interface crack problems in periodic two-layered composites, International Journal of Fracture, Vol. 62, 283-306.
  9. 9. Kaczyński A. (1999), Rigid sheet-like interface inclusion in an infinite bimaterial periodically layered composite, Journal of Theoretical and Applied Mechanics, Vol. 37, 81-94.
  10. 10. Kanaun S.K., Levin V.M. (2008), Self-Consistent Methods for Composites. Vol. 1: Static Problems, Solid Mechanics and its Applications, Vol. 148, Springer,The Netherlands, Dordrecht.10.1007/978-1-4020-6664-1
  11. 11. Kassir M.K., Sih G.C. (1968), Some three-dimensional inclusion problems in elasticity, International Journal of Solids and Structures, Vol. 4, 225-241.
  12. 12. Kassir M.K., Sih G.C. (1975), Three-Dimensional Crack Problems, Mechanics of Fracture 2, Noordhoof Int. Publ., Leyden.
  13. 13. Khai M.V. (1993), Two-Dimensional Integral Equations of the Newton-Potential Type and their Applications (in Russian), Naukova Dumka, Kiev.
  14. 14. Kit G.S., Khai M.V. (1989), Method of Potentials in Three- Dimensional Problems of Thermoelasticity of Bodies with Cracks (in Russian), Naukova Dumka, Kiev.
  15. 15. Mura T. (1982), Micromechanics of Defects in Solids, Martinus Nijhoff, The Hague.10.1007/978-94-011-9306-1
  16. 16. Panasyuk V.V., Stadnik M.M., Silovanyuk V.P. (1986), Stress Concentrations in Three-Dimensional Bodies with Thin Inclusions (in Russian), Naukova Dumka, Kiev.
  17. 17. Podil’chuk Y.N. (1997), Stress state of a transversely-isotropic body with elliptical inclusion, International Applied Mechanics, Vol. 33, 881-887.
  18. 18. Rahman M. (1999), Some problems of a rigid elliptical disc-inclusion bonded inside a transversely isotropic space, Transactions of the ASME Journal of Applied Mechanics, Vol. 66, 612-630.
  19. 19. Rahman M. (2002), A rigid elliptical disc-inclusion, in an elastic solid, subjected to a polynomial normal shift, Journal of Elasticity, Vol. 66, 207-235.
  20. 20. Rogowski B. (2006), Inclusion Problems for Anisotropic Media, Technical University of Lodz, Lodz.
  21. 21. Selvadurai A.P.S. (1982),On the interaction between an elastically embedded rigid inhomogeneity and a laterally placed concentrated force, Journal of Applied Mathematics and Physics (ZAMP), Vol. 33, 241-250.
  22. 22. Shodja H.M., Ojaghnezhad F. (2007), A general unified treatment of lamellar inhomogeneities, Engineering Fracture Mechanics, Vol. 74, 1499-1510.
  23. 23. Silovanyuk V.P. (1984), A rigid lamellar inclusion in elastic space, Materials Science, Vol. 20, 482-485.
  24. 24. Silovanyuk V.P. (2000), Fracture of Prestressed and Transversely Isotropic Bodies with Defects, National Academy of Science of Ukraine, Physico-Mechanical Institute named G.V. Karpenko, Lviv.
  25. 25. Sneddon I.N. (1972), The Use of Integral Transforms, McGraw-Hill, New York.
  26. 26. Ting T.C.T. (1996), Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York.10.1093/oso/9780195074475.001.0001
  27. 27. Vorovich I.I., Alexandrov V. V., Babeshko V. A. (1974), Nonclassical Mixed Boundary Problems of Theory of Elasticity (in Russian), Nauka, Moscow.
DOI: https://doi.org/10.2478/ama-2013-0024 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 140 - 147
Published on: Jan 22, 2014
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Andrzej Kaczyński, published by Bialystok University of Technology
This work is licensed under the Creative Commons License.