Have a personal or library account? Click to login
DOUBLY PERIODIC SETS OF THIN BRANCHED INCLUSIONS IN THE ELASTIC MEDIUM: STRESS CONCENTRATION AND EFFECTIVE PROPERTIES Cover

DOUBLY PERIODIC SETS OF THIN BRANCHED INCLUSIONS IN THE ELASTIC MEDIUM: STRESS CONCENTRATION AND EFFECTIVE PROPERTIES

Open Access
|Jan 2014

References

  1. 1. Antipov Yu.A., Popov G.Ya., Yatsko S.I. (1987), Solution of the problem of stress concentration around intersecting defects by using the riemann problem with an infinite index, Journal of Applied Mathematics and Mechanics, 51(3), 357-365.10.1016/0021-8928(87)90113-4
  2. 2. Dolgikh V.N., Fil'shtinskii L.A. (1979), Model of an anisotropic medium reinforced by thin tapes, Soviet Applied Mechanics, 15(4) 292-296.10.1007/BF00884761
  3. 3. Grigoryan E.H., Torosyan D.R., Shaghinyan S.S. (2002), A problem for an elastic plane containing a cross-like inclusion, Mechanics. Proceedings of National Academy of Sciences of Armenia, 55 (1), 6-16.
  4. 4. Kosmodamianskij A.S. (1976), Naprâžennoe sostoânie anizotropnyh sred s otverstiâmi ili polostâmi, Vyšča škola, Kyiv.
  5. 5. Osiv O.P, Sulym H.T. (2002), Antyploska deformaciâ seredovyšča zi zlučenymy pružnymy vklûčennâmy, Mehanika i fizyka rujnuvannâ budivelnuh materialiv i konstrukcij, 5, 154-164.
  6. 6. Osiv O., Sulym G. (2001), Antiplane deformation of isotropic medium with connected elastic ribbon-like inclusions, Abstracts of the Fourth Polish-Ukrainian Conference “Current Problems in Mechanics of Nonhomogeous Media” (Łódż, 4-8 Sept., 2001), Technol. Univ. of Łódż, Łódż.
  7. 7. Pasternak Ia. (2011), Coupled 2D electric and mechanical fields in piezoelectric solids containing cracks and thin inhomogeneities, Engineering Analysis with Boundary Elements, 35(4), 678-690.10.1016/j.enganabound.2010.12.001
  8. 8. Pasternak Ia. (2012), Doubly periodic arrays of cracks and thin inhomogeneities in an infinite magnetoelectroelastic medium, Engineering Analysis with Boundary Elements, 36(5), 799-811.10.1016/j.enganabound.2011.12.004
  9. 9. Pasternak Ia., Sulym H. (2011), Ploska zadača teorij pružnosti anizotropnogo tila z tonkymy gillâstymy pružnymy vklûčennâmy, Visnyk Ternopilskogo NTU, 16(4) 23-31.
  10. 10. Pasternak Ia., Sulym H. (2013), Stroh formalism based boundary integral equations for 2D magnetoelectroelasticity, Engineering Analysis with Boundary Elements, 37(1), 167-175.10.1016/j.enganabound.2012.09.009
  11. 11. Popov V.G. (1993), Dynamic problem of the theory of elasticity for a plane containing a rigid cruciform inclusion, Journal of Applied Mathematics and Mechanics, 57(1), 125-131.10.1016/0021-8928(93)90106-V
  12. 12. Šackyj I.P, Kundrat A.M. (2004), Antyploska deformaciâ pružnogo prostoru zi zvâzanymy žorstkymy stričkovymy vklûčennâmy, Dopovivdi NAN Ukrajiny, 11, 55-60.
  13. 13. Sulym H.T. (2007), Osnovy matematyčnoj teorij termopružnoj rivnovagy deformivnyh til z tonkymy vklûčennâmy, Dosl.-vydav. centr NTŠ, L’viv.
  14. 14. Ting T.C.T. (1996), Anisotropic elasticity: theory and applications, Oxford University Press, New York.10.1093/oso/9780195074475.001.0001
DOI: https://doi.org/10.2478/ama-2013-0009 | Journal eISSN: 2300-5319 | Journal ISSN: 1898-4088
Language: English
Page range: 48 - 52
Published on: Jan 22, 2014
Published by: Bialystok University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Heorhiy Sulym, Iaroslav Pasternak, Serhiy Kutsyk, Wojciech Grodzki, published by Bialystok University of Technology
This work is licensed under the Creative Commons License.