References
- 1. Benvenuti L., Farina L. (2004), A tutorial on the positive realization problem, IEEE Trans. Autom. Control., Vol. 49, No. 5, 651-664.
- 2. Dail L. (1989), Singular control systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin.10.1007/BFb0002475
- 3. Dodig M. Stosic M. (2009), Singular systems state feedbacks problems, Linear Algebra and its Applications, Vol. 431, No. 8, 1267-1292.
- 4. Fahmy M.H, O’Reill J. (1989), Matrix pencil of closed-loop descriptor systems: infinite-eigenvalues assignment, Int. J. Control., Vol. 49, No. 4, 1421-1431.
- 5. Gantmacher F. R. (1960), The theory of Matrices, Chelsea Publishing Co., New York.
- 6. Kaczorek T. (1992), Linear control systems, Vol. 1, Research Studies Press J. Wiley, New York.
- 7. Kaczorek T. (2004), Infinite eigenvalue assignment by outputfeedbacks for singular systems, Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 1, 19-23.
- 8. Kaczorek T. (2007a), Polynomial and rational matrices. Applications in dynamical systems theory, Springer-Verlag, London.10.1007/978-1-84628-605-6
- 9. Kaczorek T. (2007b), Realization problem for singular positive continuous-time systems with delays, Control and Cybernetics, Vol. 36, No. 1, 47-57.
- 10. Kaczorek T. (2008), Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci., Vol. 18, No. 2, 223-228.
- 11. Kaczorek T. (2010a), Analysis of fractional electrical circuits in transient states, VII Konferencja Naukowo-Techniczna : Logistyka - systemy transportowe - bezpieczeństwo w transporcie, Szczyrk.
- 12. Kaczorek T. (2010b), Positive linear systems with different fractional orders, Bull. Pol. Ac. Sci. Techn., Vol. 58, No. 3, 453-458.10.2478/v10175-010-0043-1
- 13. Kaczorek T. (2011) Selected Problems in Fractional Systems Theory, Springer-Verlag.10.1007/978-3-642-20502-6
- 14. Kucera V. Zagalak P. (1988), Fundamental theorem of state feedback for singular systems, Automatica, Vol. 24, No. 5, 653-658.
- 15. Podlubny I. (1999), Fractional differential equations, Academic Press, New York.
- 16. Van Dooren P. (1979), The computation of Kronecker’s canonical form of a singular pencil, Linear Algebra and Its Applications, Vol. 27, 103-140.