<bold>Alvarado M, Martín-Galiano AJ, Ferrándiz MJ, Zaballos Á, de la Campa AG</bold>. Upregulation of the PatAB transporter confers fluoroquinolone resistance to Streptococcus pseudopneumoniae. Front Microbiol. 2017 Nov; 8:2074. <a href="https://doi.org/10.3389/fmicb.2017.02074" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2017.02074</a>
<bold>Arefin MK, Rumi SKNF, Uddin AKMN, Banu SS, Khan M, Kaiser A, Chowdhury JA, Khan MAS, Hasan MJ</bold>. Virucidal effect of povidone iodine on SARS-CoV-2 in nasopharynx: an open-label randomized clinical trial. Indian J Otolaryngol Head Neck Surg. 2022 Oct; 74:3283–3292. <a href="https://doi.org/10.1007/s12070-022-03106-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12070-022-03106-0</a>
<bold>Auer DL, Cieplik F, et al</bold>. Phenotypic adaptation to antiseptics and effects on biofilm formation capacity and antibiotic resistance in clinical isolates of early colonizers in dental plaque. Antibiotics (Basel). 2022 May; 11:688. <a href="https://doi.org/10.3390/antibiotics11050688" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11050688</a>
<bold>Augustin M, Herberger K, Wille A, Twarock S</bold>. Impact of human wound exudate on the bactericidal efficacy of commercial antiseptic products. J Wound Care. 2023 Jul; 32:422–427. <a href="https://doi.org/10.12968/jowc.2023.32.7.422" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.12968/jowc.2023.32.7.422</a>
<bold>Bleriot I, Tomas M, et al</bold>. Mechanisms of tolerance and resistance to chlorhexidine in clinical strains of Klebsiella pneumoniae producers of carbapenemase: role of new type II toxin-antitoxin system, PemIK. Toxins (Basel). 2020 Sep; 12:566. <a href="https://doi.org/10.3390/toxins12090566" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/toxins12090566</a>
<bold>Boisson M, Mimoz O, et al</bold>. Chlorhexidine-alcohol compared with povidone-iodine-alcohol skin antisepsis protocols in major cardiac surgery: a randomized clinical trial. Intensive Care Med. 2024 Sep; 50:2114–2124. <a href="https://doi.org/10.1007/s00134-024-07693-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00134-024-07693-0</a>
<bold>Bonn EL, Cieplik F, et al</bold>. Efficacy of a mouthwash containing CHX and CPC in SARS-CoV-2-positive patients: a randomized controlled clinical trial. J Dent Res. 2023 Apr; 102:608–615. <a href="https://doi.org/10.1177/00220345231156415" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/00220345231156415</a>
<bold>Brookes ZLS, Bescos R, Belfield LA, Ali K, Roberts A</bold>. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020 Aug; 103:103497. <a href="https://doi.org/10.1016/j.jdent.2020.103497" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jdent.2020.103497</a>
<bold>Campana R, Baffone W</bold>. Assessment of antimicrobial activity in different sanitizer products commonly used in food processing environment and home setting. EC Microbiol. 2017; 12:260–268.
<bold>Costa SS, Viveiros M, Pomba C, Couto I</bold>. Active antimicrobial efflux in Staphylococcus epidermidis: building up of resistance to fluoroquinolones and biocides in a major opportunistic pathogen. J Antimicrob Chemother. 2018 Jan; 73:320–324. <a href="https://doi.org/10.1093/jac/dkx400" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jac/dkx400</a>
<bold>Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ</bold>. Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol. 2015 Sep; 81:7330–7338. <a href="https://doi.org/10.1128/AEM.01985-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.01985-15</a>
<bold>Dindarloo K, Aghamolaei T, Ghanbarnejad A, Turki H, Hoseinvandtabar S, Pasalari H, Ghaffari HR</bold>. Pattern of disinfectants use and their adverse effects on the consumers after COVID-19 outbreak. J Environ Health Sci Eng. 2020 Sep; 18:1301–1310. <a href="https://doi.org/10.1007/s40201-020-00548-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40201-020-00548-y</a>
<bold>Eggers M, Eickmann M, Kowalski K, Zorn J, Reimer K</bold>. Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses. BMC Infect Dis. 2015 Jul; 15:375. <a href="https://doi.org/10.1186/s12879-015-1111-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12879-015-1111-9</a>
<bold>Eggers M, Koburger-Janssen T, Ward LS, Newby C, Müller S</bold>. Bactericidal and virucidal activity of povidone-iodine and chlorhexidine gluconate cleansers in an in vivo hand hygiene clinical simulation study. Infect Dis Ther. 2018 Feb; 7:235–247. <a href="https://doi.org/10.1007/s40121-018-0202-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40121-018-0202-5</a>
<bold>Ekizoglu M, Sagiroglu M, Kilic E, Hascelik AG</bold>. An investigation of the bactericidal activity of chlorhexidine digluconate against multidrug-resistant hospital isolates. Turk J Med Sci. 2016 Jul; 46:903– 909. <a href="https://doi.org/10.3906/sag-1503-140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3906/sag-1503-140</a>
European Pharmacopoeia. Ph Eur 11.5, monography 5.1.11. Determination of bactericidal, fungicidal or yesticidal activity of antiseptic medicinal products. 2024; 673–674.
<bold>Fabre L, Sygusch J, et al</bold>. A “drug sweeping” state of the TriABC triclosan efflux pump from Pseudomonas aeruginosa. Structure. 2021 Feb; 29:261–274. <a href="https://doi.org/10.1016/j.str.2020.09.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.str.2020.09.001</a>
<bold>Früh R, Anderson A, Cieplik F, Hellwig E, Wittmer A, Vach K, Al-Ahmad A</bold>. Antibiotic resistance of selected bacteria after treatment of the supragingival biofilm with subinhibitory chlorhexidine concentrations. Antibiotics (Basel). 2022 Oct; 11:1420. <a href="https://doi.org/10.3390/antibiotics11101420" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11101420</a>
<bold>Furi L, Oggioni M, et al</bold>. Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 2013 Jul; 57:3488–3497. <a href="https://doi.org/10.1128/AAC.00498-13" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.00498-13</a>
<bold>Garratt I, Aranega-Bou P, Sutton JM, Moore G, Wand ME</bold>. Long-term exposure to octenidine in a simulated sink trap environment results in selection of Pseudomonas aeruginosa, Citrobacter, and Enterobacter isolates with mutations in efflux pump regulators. Appl Environ Microbiol. 2021 May; 87:e00210-21. <a href="https://doi.org/10.1128/AEM.00210-21" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.00210-21</a>
<bold>Gregorchuk BSJ, Bay DC, et al</bold>. Phenotypic and multi-omics characterization of Escherichia coli K-12 adapted to chlorhexidine identifies the role of MlaA and other cell envelope alterations regulated by stress inducible pathways in chx resistance. Front Mol Biosci. 2021 Oct; 8:659058. <a href="https://doi.org/10.3389/fmolb.2021.659058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmolb.2021.659058</a>
<bold>Guo J, Liao M, He B, Liu J, Hu X, Yan D, Wang J</bold>. Impact of the COVID-19 pandemic on household disinfectant consumption behaviors and related environmental concerns: a questionnaire-based survey in China. J Environ Chem Eng. 2021 Sep; 9:106168. <a href="https://doi.org/10.1016/j.jece.2021.106168" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jece.2021.106168</a>
<bold>Hamad AA</bold>. In vitro evaluation the efficacy of some new plant extracts and biocides on the viability of Acanthamoeba castellanii. Protist. 2023 Mar; 174:125966. <a href="https://doi.org/10.1016/j.protis.2023.125966" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.protis.2023.125966</a>
<bold>Hashemi MM, Savage PB, et al</bold>. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front Microbiol. 2019 Feb; 10:210. <a href="https://doi.org/10.3389/fmicb.2019.00210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2019.00210</a>
<bold>Hassan KA, Liu Q, Henderson PJ, Paulsen IT</bold>. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015 Nov; 6:e01982-14. <a href="https://doi.org/10.1128/mBio.01982-14" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/mBio.01982-14</a>
<bold>Heir E, Sundheim G, Holck AL</bold>. The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett. 1998 Oct; 163:49–56. <a href="https://doi.org/10.1111/j.1574-6968.1998.tb13025.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1998.tb13025.x</a>
<bold>Hernández A, Ruiz FM, Romero A, Martínez JL</bold>. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog. 2011 Nov; 7:e1002103. <a href="https://doi.org/10.1371/journal.ppat.1002103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.ppat.1002103</a>
<bold>Hirose R, Nakaya T, Naito Y, Daidoji T, Watanabe Y, Yasuda H, Itoh Y</bold>. Viscosity is an important factor of resistance to alcohol-based disinfectants by pathogens present in mucus. Sci Rep. 2017 Oct; 7:13186. <a href="https://doi.org/10.1038/s41598-017-13732-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-017-13732-2</a>
<bold>Junka A, Bartoszewicz M, Smutnicka D, Secewicz A, Szymczyk P</bold>. Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J. 2014 Dec; 11:730–734. <a href="https://doi.org/10.1111/iwj.12057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/iwj.12057</a>
<bold>Kernberger-Fischer IA, Krischek C, Strommenger B, Fiegen U, Beyerbach M, Kreienbrock L, Klein G, Kehrenberg C</bold>. Susceptibility of methicillin-resistant and -susceptible Staphylococcus aureus isolates of various clonal lineages from Germany to eight biocides. Appl Environ Microbiol. 2018 Sep; 84:e00799-00718. <a href="https://doi.org/10.1128/AEM.00799-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.00799-18</a>
<bold>Komine A, Yamaguchi E, Okamoto N, Yamamoto K</bold>. Virucidal activity of oral care products against SARS-CoV-2 in vitro. J Oral Maxillofac Surg Med Pathol. 2021 Oct; 33:475–477. <a href="https://doi.org/10.1016/j.ajoms.2021.02.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ajoms.2021.02.002</a>
<bold>Lachapelle JM, Castel O, Casado AF, Leroy B, Micali G, Tennstedt D, Lambert J</bold>. Antiseptics in the era of bacterial resistance: a focus on povidone iodine. Clin Pract. 2013; 10:579–592. <a href="https://doi.org/10.2217/CPR.13.50" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/CPR.13.50</a>
<bold>Lerma LL, Benomar N, Valenzuela AS, Casado Muñoz Mdel C, Gálvez A, Abriouel H</bold>. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014 Oct; 44:249–257. <a href="https://doi.org/10.1016/j.fm.2014.06.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fm.2014.06.009</a>
<bold>Malanovic N, Ön A, Pabst G, Zellner A, Lohner K</bold>. Octenidine: novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int J Antimicrob Agents. 2020 Jul; 56:106146. <a href="https://doi.org/10.1016/j.ijantimicag.2020.106146" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2020.106146</a>
<bold>Mcmurry LM, Oethinger M, Levy SB</bold>. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett. 1998 Aug; 166:305–309. <a href="https://doi.org/10.1111/j.1574-6968.1998.tb13905.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1998.tb13905.x</a>
<bold>Noguchi N, Hase M, Kitta M, Sasatsu M, Deguchi K, Kono M</bold>. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 1999 Feb; 172:247–253. <a href="https://doi.org/10.1111/j.1574-6968.1999.tb13475.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1999.tb13475.x</a>
<bold>Rembe JD, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK</bold>. Antimicrobial hypochlorous wound irrigation solutions demonstrate lower anti-biofilm efficacy against bacterial biofilm in a complex in-vitro human plasma biofilm model (hpBIOM) than common wound antimicrobials. Front Microbiol. 2020 May; 11:564513. <a href="https://doi.org/10.3389/fmicb.2020.564513" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2020.564513</a>
<bold>Rensch U, Nishino K, Klein G, Kehrenberg C</bold>. Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan. Int J Antimicrob Agents. 2014 Jun; 44:179–180. <a href="https://doi.org/10.1016/j.ijantimicag.2014.04.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2014.04.015</a>
<bold>Renzoni A, François P, et al</bold>. Impact of exposure of methicillin-resistant Staphylococcus aureus to polyhexanide in vitro and in vivo. Antimicrob Agents Chemother. 2017 Mar; 61:e00272-17. <a href="https://doi.org/10.1128/AAC.00272-17" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.00272-17</a>
<bold>Romanova NA, Wolffs PF, Brovko LY, Griffiths MW</bold>. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol. 2006 May; 72:3498–3503. <a href="https://doi.org/10.1128/aem.72.5.3498-3503.2006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aem.72.5.3498-3503.2006</a>
<bold>Şahiner A, Halat E, Alğın Yapar E</bold>. Comparison of bactericidal and fungicidal efficacy of antiseptic formulations according to EN 13727 and EN 13624 standards. Turk J Med Sci. 2019 Aug; 49:1564–1567. <a href="https://doi.org/10.3906/sag-1906-53" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3906/sag-1906-53</a>
<bold>Sathiyamurthy S, Banerjee J, Godambe SV</bold>. Antiseptic use in the neonatal intensive care unit - a dilemma in clinical practice: an evidence based review. World J Clin Pediatr. 2016 May; 5:159–171. <a href="https://doi.org/10.5409/wjcp.v5.i2.159" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5409/wjcp.v5.i2.159</a>
<bold>Schweizer HP</bold>. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother. 1998 Feb; 42:394–398. <a href="https://doi.org/10.1128/aac.42.2.394" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.42.2.394</a>
<bold>Semeshchenko D, Veiga MF, Visus M, Farinati A, Huespe I, Unit HHS, Buttaro MA, Slullitel PA</bold>. Povidone-iodine and silver nitrate are equally effective in eradicating staphylococcal biofilm grown on a titanium surface: an in-vitro analysis. J Hosp Infect. 2025 Jan; 155:185–191. <a href="https://doi.org/10.1016/j.jhin.2024.11.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2024.11.012</a>
<bold>Shepherd JA, Parker MD</bold>. Repeat-exposure in vitro protocol to assess the risk of antimicrobial resistance (AMR) development from use of personal care products: case study using an antibacterial liquid handwash. J Microbiol Methods. 2023 Apr; 215:106851. <a href="https://doi.org/10.1016/j.mimet.2023.106851" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mimet.2023.106851</a>
<bold>Shepherd MJ, Moore G, Wand ME, Sutton JM, Bock LJ</bold>. Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J Hosp Infect. 2018 Jan; 100:e23–e29. <a href="https://doi.org/10.1016/j.jhin.2018.03.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2018.03.037</a>
<bold>Smeets R, Pfefferle S, Büttner H, Knobloch JK, Lütgehetmann M</bold>. Impact of oral rinsing with octenidine based solution on SARS-CoV-2 loads in saliva of infected patients an exploratory study. Int J Environ Res Public Health. 2022 May; 19:5582. <a href="https://doi.org/10.3390/ijerph19095582" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijerph19095582</a>
<bold>Srinivasan VB, Rajamohan G</bold>. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother. 2013 Jul; 57:4449–4462. <a href="https://doi.org/10.1128/aac.02284-12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.02284-12</a>
<bold>Steinhauer K, Meister TL, Todt D, Krawczyk A, Paßvogel L, Becker B, Paulmann D, Bischoff B, Pfaender S, Brill FHH, Steinmann E</bold>. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J Hosp Infect. 2021 Mar; 111:180–183. <a href="https://doi.org/10.1016/j.jhin.2021.01.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2021.01.031</a>
<bold>Suchomel M, Lenhardt A, Kampf G, Grisold A</bold>. Enterococcus hirae, Enterococcus faecium and Enterococcus faecalis show different sensitivities to typical biocidal agents used for disinfection. J Hosp Infect. 2019 Oct; 103:435–440. <a href="https://doi.org/10.1016/j.jhin.2019.08.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2019.08.014</a>
<bold>Tong C, Hu H, Chen G, Li Z, Li A, Zhang J</bold>. Disinfectant resistance in bacteria: mechanisms, spread, and resolution strategies. Environ Res. 2021 Oct; 195:110897. <a href="https://doi.org/10.1016/j.envres.2021.110897" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envres.2021.110897</a>
<bold>Tyski S, Bocian E, Laudy AE</bold>. Animal health protection - assessing antimicrobial activity of veterinary disinfectants and antiseptics and their compliance with European Standards: a narrative review. Pol J Microbiol. 2024 Aug; 73:413–431. <a href="https://doi.org/10.33073/pjm-2024-043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33073/pjm-2024-043</a>
<bold>Tyski S, Bocian E, Laudy AE</bold>. Application of normative documents for determination of biocidal activity of disinfectants and antiseptics dedicated to the medical area: a narrative review. J Hosp Infect. 2022 Apr; 125:75–91. <a href="https://doi.org/10.1016/j.jhin.2022.03.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2022.03.016</a>
<bold>Vaezi S.S., Poorazizi E., Tahmourespour A., Aminsharei F</bold>. Application of artificial neural networks to describe the combined effect of pH, time, NaCl and ethanol concentrations on the biofilm formation of Staphylococcus aureus. Microb. Pathog. 2020 Sep; 141:103986. <a href="https://doi.org/10.1016/j.micpath.2020.103986" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micpath.2020.103986</a>
<bold>Widmer AF, Jent P, et al</bold>. Povidone iodine vs chlorhexidine gluconate in alcohol for preoperative skin antisepsis: a randomized clinical trial. JAMA. 2024;332:541–549. <a href="https://doi.org/10.1001/jama.2024.8531" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1001/jama.2024.8531</a>
<bold>Williamson DA, Carter GP, Howden BP</bold>. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin. Microbiol. Rev. 2017;30:827–860. <a href="https://doi.org/10.1128/cmr.00112-16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/cmr.00112-16</a>
<bold>Wu D, Lu R, Chen Y, Qiu J, Deng C, Tan Q</bold>. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2016;7:61–66. <a href="https://doi.org/10.1016/j.jgar.2016.07.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jgar.2016.07.011</a>
<bold>Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H, Noh JY, Cheong HJ, Kim WJ</bold>. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J. Korean Med. Sci. 2020;35:e195. <a href="https://doi.org/10.3346/jkms.2020.35.e195" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3346/jkms.2020.35.e195</a>
<bold>Zheng X., Zhou T., et al</bold>. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China. Int. J. Antimicrob. Agents. 2022; 60:106605. <a href="https://doi.org/10.1016/j.ijantimicag.2022.106605" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2022.106605</a>