Have a personal or library account? Click to login
Antiseptics: Their Characteristics, Application and Challenges in the 21St Century Resulting from the Spread of Antimicrobial Resistance (AMR) Cover

Antiseptics: Their Characteristics, Application and Challenges in the 21St Century Resulting from the Spread of Antimicrobial Resistance (AMR)

Open Access
|Sep 2025

References

  1. <bold>Addetia A, Greninger AL, Adler A, Yuan S, Makhsous N, Qin X, Zerr DM</bold>. A novel, widespread qacA allele results in reduced chlorhexidine susceptibility in Staphylococcus epidermidis. Antimicrob Agents Chemother. 2019 Jan; 63:e02607-18. <a href="https://doi.org/10.1128/aac.02607-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.02607-18</a>
  2. <bold>Adkin P, Hitchcock A, Smith LJ, Walsh SE</bold>. Priming with biocides: a pathway to antibiotic resistance? J Appl Microbiol. 2022 Sep; 133:830–841. <a href="https://doi.org/10.1111/jam.15564" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jam.15564</a>
  3. <bold>Alonso B, Perez-Granda MJ, Rodriguez-Huerta A, Rodriguez C, Bouza E, Guembe M</bold>. The optimal ethanol lock therapy regimen for treatment of biofilm-associated catheter infections: an in-vitro study. J Hosp Infect. 2018 Jun; 100:e187–e195. <a href="https://doi.org/10.1016/j.jhin.2018.04.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2018.04.007</a>
  4. <bold>Alvarado M, Martín-Galiano AJ, Ferrándiz MJ, Zaballos Á, de la Campa AG</bold>. Upregulation of the PatAB transporter confers fluoroquinolone resistance to Streptococcus pseudopneumoniae. Front Microbiol. 2017 Nov; 8:2074. <a href="https://doi.org/10.3389/fmicb.2017.02074" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2017.02074</a>
  5. <bold>Alvarez-Marin R, Aires-De-Sousa M, Nordmann P, Kieffer N, Poirel L</bold>. Antimicrobial activity of octenidine against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017 Dec; 36:2379–2383. <a href="https://doi.org/10.1007/s10096-017-3070-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10096-017-3070-0</a>
  6. <bold>Amalaradjou MA, Venkitanarayanan K</bold>. Antibiofilm effect of octenidine hydrochloride on Staphylococcus aureus, MRSA and VRSA. Pathogens. 2014 Jun; 3:404–416. <a href="https://doi.org/10.3390/pathogens3020404" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pathogens3020404</a>
  7. <bold>Arefin MK, Rumi SKNF, Uddin AKMN, Banu SS, Khan M, Kaiser A, Chowdhury JA, Khan MAS, Hasan MJ</bold>. Virucidal effect of povidone iodine on SARS-CoV-2 in nasopharynx: an open-label randomized clinical trial. Indian J Otolaryngol Head Neck Surg. 2022 Oct; 74:3283–3292. <a href="https://doi.org/10.1007/s12070-022-03106-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12070-022-03106-0</a>
  8. <bold>Auer DL, Cieplik F, et al</bold>. Phenotypic adaptation to antiseptics and effects on biofilm formation capacity and antibiotic resistance in clinical isolates of early colonizers in dental plaque. Antibiotics (Basel). 2022 May; 11:688. <a href="https://doi.org/10.3390/antibiotics11050688" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11050688</a>
  9. <bold>Augustin M, Herberger K, Wille A, Twarock S</bold>. Impact of human wound exudate on the bactericidal efficacy of commercial antiseptic products. J Wound Care. 2023 Jul; 32:422–427. <a href="https://doi.org/10.12968/jowc.2023.32.7.422" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.12968/jowc.2023.32.7.422</a>
  10. <bold>Babalska ZL, Korbecka-Paczkowska M, Karpiński TM</bold>. Wound antiseptics and European guidelines for antiseptic application in wound treatment. Pharmaceuticals (Basel). 2021 Dec; 14:1253. <a href="https://doi.org/10.3390/ph14121253" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ph14121253</a>
  11. <bold>Barakat NA, Rasmy SA, Hosny A, Kashef MT</bold>. Effect of povidone-iodine and propanol-based mecetronium ethyl sulphate on antimicrobial resistance and virulence in Staphylococcus aureus. Antimicrob Resist Infect Control. 2022 Jun; 11:139. <a href="https://doi.org/10.1186/s13756-022-01178-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13756-022-01178-9</a>
  12. <bold>Bes TM, Nagano DS, Marchi AP, Camilo G, Perdigão-Neto LV, Martins RR, Levin AS, Costa SF</bold>. Conjugative transfer of plasmid p_8N_qac(MN687830.1) carrying qacA gene from Staphylococcus aureus to Escherichia coli C600: potential mechanism for spreading chlorhexidine resistance. Rev Inst Med Trop Sao Paulo. 2021 Nov; 63:e82. <a href="https://doi.org/10.1590/s1678-9946202163082" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1590/s1678-9946202163082</a>
  13. <bold>Bjorland J, Steinum T, Sunde M, Waage S, Heir E</bold>. Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob Agents Chemother. 2003 Oct; 47:3046–3052. <a href="https://doi.org/10.1128/aac.47.10.3046-3052.2003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.47.10.3046-3052.2003</a>
  14. <bold>Bleriot I, Tomas M, et al</bold>. Mechanisms of tolerance and resistance to chlorhexidine in clinical strains of Klebsiella pneumoniae producers of carbapenemase: role of new type II toxin-antitoxin system, PemIK. Toxins (Basel). 2020 Sep; 12:566. <a href="https://doi.org/10.3390/toxins12090566" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/toxins12090566</a>
  15. <bold>Bock LJ, Sutton JM, et al</bold>. Pseudomonas aeruginosa adapts to octenidine via a combination of efflux and membrane remodelling. Commun Biol. 2021 Oct; 4:1058. <a href="https://doi.org/10.1038/s42003-021-02566-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s42003-021-02566-4</a>
  16. <bold>Boisson M, Mimoz O, et al</bold>. Chlorhexidine-alcohol compared with povidone-iodine-alcohol skin antisepsis protocols in major cardiac surgery: a randomized clinical trial. Intensive Care Med. 2024 Sep; 50:2114–2124. <a href="https://doi.org/10.1007/s00134-024-07693-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00134-024-07693-0</a>
  17. <bold>Bonn EL, Cieplik F, et al</bold>. Efficacy of a mouthwash containing CHX and CPC in SARS-CoV-2-positive patients: a randomized controlled clinical trial. J Dent Res. 2023 Apr; 102:608–615. <a href="https://doi.org/10.1177/00220345231156415" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/00220345231156415</a>
  18. <bold>Braga TM, Marujo PE, Pomba C, Lopes MFS</bold>. Involvement, and dissemination, of the enterococcal small multidrug resistance transporter QacZ in resistance to quaternary ammonium compounds. J Antimicrob Chemother. 2011 Jan; 66:283–286. <a href="https://doi.org/10.1093/jac/dkq460" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jac/dkq460</a>
  19. <bold>Brookes ZLS, Bescos R, Belfield LA, Ali K, Roberts A</bold>. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020 Aug; 103:103497. <a href="https://doi.org/10.1016/j.jdent.2020.103497" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jdent.2020.103497</a>
  20. <bold>Campana R, Baffone W</bold>. Assessment of antimicrobial activity in different sanitizer products commonly used in food processing environment and home setting. EC Microbiol. 2017; 12:260–268.
  21. <bold>Cheung HY, Wong MM, Cheung SH, Liang LY, Lam YW, Chiu SK</bold>. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS One. 2012 May; 7:e36659. <a href="https://doi.org/10.1371/journal.pone.0036659" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0036659</a>
  22. <bold>Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP</bold>. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrugefflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother. 2001 Feb; 45:428–432. <a href="https://doi.org/10.1128/aac.45.2.428-432.2001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.45.2.428-432.2001</a>
  23. <bold>Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A</bold>. Resistance toward chlorhexidine in oral bacteria – is there cause for concern? Front Microbiol. 2019 Apr; 10:587. <a href="https://doi.org/10.3389/fmicb.2019.00587" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2019.00587</a>
  24. <bold>Climo MW, Wong ES, et al</bold>. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013 Feb; 368:533–542. <a href="https://doi.org/10.1056/NEJMoa1113849" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1056/NEJMoa1113849</a>
  25. <bold>Costa SS, Viveiros M, Amaral L, Couto I</bold>. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J. 2013 Mar; 7:59–71. <a href="https://doi.org/10.2174/1874285801307010059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1874285801307010059</a>
  26. <bold>Costa SS, Viveiros M, Pomba C, Couto I</bold>. Active antimicrobial efflux in Staphylococcus epidermidis: building up of resistance to fluoroquinolones and biocides in a major opportunistic pathogen. J Antimicrob Chemother. 2018 Jan; 73:320–324. <a href="https://doi.org/10.1093/jac/dkx400" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jac/dkx400</a>
  27. <bold>Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ</bold>. Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol. 2015 Sep; 81:7330–7338. <a href="https://doi.org/10.1128/AEM.01985-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.01985-15</a>
  28. <bold>Curiao T, Marchi E, Viti C, Oggioni MR, Baquero F, Martinez JL, Coque TM</bold>. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob Agents Chemother. 2015 May; 59:3413–3423. <a href="https://doi.org/10.1128/aac.00187-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.00187-15</a>
  29. <bold>Denisiewicz B, Denisiewicz A. Hand</bold> hygiene experiences during the covid-19 pandemic in hospital condition. Forum Zakażeń. 2021 Jun; 12:109–114. <a href="https://doi.org/10.15374/FZ2021022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15374/FZ2021022</a>
  30. <bold>Dindarloo K, Aghamolaei T, Ghanbarnejad A, Turki H, Hoseinvandtabar S, Pasalari H, Ghaffari HR</bold>. Pattern of disinfectants use and their adverse effects on the consumers after COVID-19 outbreak. J Environ Health Sci Eng. 2020 Sep; 18:1301–1310. <a href="https://doi.org/10.1007/s40201-020-00548-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40201-020-00548-y</a>
  31. <bold>Edmonds SL, Macinga DR, Mays-Suko P, Duley C, Rutter J, Jarvis WR, Arbogast JW</bold>. Comparative efficacy of commercially available alcohol-based hand rubs and World Health Organization-recommended hand rubs: formulation matters. Am J Infect Control. 2012 Sep; 40:521–525. <a href="https://doi.org/10.1016/j.ajic.2011.08.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ajic.2011.08.016</a>
  32. <bold>Eggers M, Eickmann M, Kowalski K, Zorn J, Reimer K</bold>. Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses. BMC Infect Dis. 2015 Jul; 15:375. <a href="https://doi.org/10.1186/s12879-015-1111-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12879-015-1111-9</a>
  33. <bold>Eggers M, Koburger-Janssen T, Eickmann M, Zorn J</bold>. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther. 2018 Mar; 7:249–259. <a href="https://doi.org/10.1007/s40121-018-0200-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40121-018-0200-7</a>
  34. <bold>Eggers M, Koburger-Janssen T, Ward LS, Newby C, Müller S</bold>. Bactericidal and virucidal activity of povidone-iodine and chlorhexidine gluconate cleansers in an in vivo hand hygiene clinical simulation study. Infect Dis Ther. 2018 Feb; 7:235–247. <a href="https://doi.org/10.1007/s40121-018-0202-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40121-018-0202-5</a>
  35. <bold>Eigner F, Keller S, Schmitt S, Corti S, Nolff MC</bold>. Efficiency of octenidine dihydrochloride alcohol combination compared to ethanol based skin antiseptics for preoperative skin preparation in dogs. PLoS One. 2023 Aug; 18:e0293211. <a href="https://doi.org/10.1371/journal.pone.0293211" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0293211</a>
  36. <bold>Ekizoglu M, Sagiroglu M, Kilic E, Hascelik AG</bold>. An investigation of the bactericidal activity of chlorhexidine digluconate against multidrug-resistant hospital isolates. Turk J Med Sci. 2016 Jul; 46:903– 909. <a href="https://doi.org/10.3906/sag-1503-140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3906/sag-1503-140</a>
  37. <bold>Elekhnawy E, Sonbol F, Abdelaziz A, Elbanna T</bold>. Potential impact of biocide adaptation on selection of antibiotic resistance in bacterial isolates. Future J Pharm Sci. 2020 Nov; 6:1. <a href="https://doi.org/10.1186/s43094-020-00119-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s43094-020-00119-w</a>
  38. European Pharmacopoeia. Ph Eur 11.5, monography 5.1.11. Determination of bactericidal, fungicidal or yesticidal activity of antiseptic medicinal products. 2024; 673–674.
  39. <bold>Fabre L, Sygusch J, et al</bold>. A “drug sweeping” state of the TriABC triclosan efflux pump from Pseudomonas aeruginosa. Structure. 2021 Feb; 29:261–274. <a href="https://doi.org/10.1016/j.str.2020.09.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.str.2020.09.001</a>
  40. <bold>Fang CT, Chen HC, Chuang YP, Chang SC, Wang JT</bold>. Cloning of a cation efflux pump gene associated with chlorhexidine resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2002 Jun; 46:2024–2028. <a href="https://doi.org/10.1128/AAC.46.6.2024-2028.2002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.46.6.2024-2028.2002</a>
  41. <bold>Fang T, Jiang Y, et al</bold>. Unexpected inhibitory effect of octenidine dihydrochloride on candida albicans filamentation by impairing ergosterol biosynthesis and disrupting cell membrane integrity. Antibiotics (Basel). 2023 Dec; 12:1675. <a href="https://doi.org/10.3390/antibiotics12121675" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics12121675</a>
  42. <bold>Frost SA, Alogso MC, Metcalfe L, Lynch JM, Hunt L, Sanghavi R, Alexandrou E, Hillman KM</bold>. Chlorhexidine bathing and health care-associated infections among adult intensive care patients: a systematic review and meta-analysis. Crit Care. 2016 Dec; 20:379. <a href="https://doi.org/10.1186/s13054-016-1553-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13054-016-1553-5</a>
  43. <bold>Früh R, Anderson A, Cieplik F, Hellwig E, Wittmer A, Vach K, Al-Ahmad A</bold>. Antibiotic resistance of selected bacteria after treatment of the supragingival biofilm with subinhibitory chlorhexidine concentrations. Antibiotics (Basel). 2022 Oct; 11:1420. <a href="https://doi.org/10.3390/antibiotics11101420" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11101420</a>
  44. <bold>Furi L, Oggioni M, et al</bold>. Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 2013 Jul; 57:3488–3497. <a href="https://doi.org/10.1128/AAC.00498-13" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.00498-13</a>
  45. <bold>Garratt I, Aranega-Bou P, Sutton JM, Moore G, Wand ME</bold>. Long-term exposure to octenidine in a simulated sink trap environment results in selection of Pseudomonas aeruginosa, Citrobacter, and Enterobacter isolates with mutations in efflux pump regulators. Appl Environ Microbiol. 2021 May; 87:e00210-21. <a href="https://doi.org/10.1128/AEM.00210-21" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.00210-21</a>
  46. <bold>Gregorchuk BSJ, Bay DC, et al</bold>. Phenotypic and multi-omics characterization of Escherichia coli K-12 adapted to chlorhexidine identifies the role of MlaA and other cell envelope alterations regulated by stress inducible pathways in chx resistance. Front Mol Biosci. 2021 Oct; 8:659058. <a href="https://doi.org/10.3389/fmolb.2021.659058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmolb.2021.659058</a>
  47. <bold>Gugsch F, Tan CK, Oh DY, Passvogel L, Steinhauer K</bold>. Efficacy of octenidine- and chlorhexidine-based wash-mitts against Candida albicans and Candida auris - a comparative study. J Hosp Infect. 2024 Jan; 143:91–96. <a href="https://doi.org/10.1016/j.jhin.2023.10.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2023.10.018</a>
  48. <bold>Guimarães MA, Coelho LR, Souza RR, Ferreira-Carvalho BT, Figueiredo MAS</bold>. Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol. 2012 Mar; 56:203–207. <a href="https://doi.org/10.1111/j.1348-0421.2011.00423.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1348-0421.2011.00423.x</a>
  49. <bold>Gülmez D, Brown JL, Butcher MC, Delaney C, Kean R, Ramage G, Short B</bold>. Investigating dual-species Candida auris and Staphylococcal biofilm antiseptic challenge. Antibiotics (Basel). 2022 Jul; 11:931. <a href="https://doi.org/10.3390/antibiotics11070931" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11070931</a>
  50. <bold>Guo J, Liao M, He B, Liu J, Hu X, Yan D, Wang J</bold>. Impact of the COVID-19 pandemic on household disinfectant consumption behaviors and related environmental concerns: a questionnaire-based survey in China. J Environ Chem Eng. 2021 Sep; 9:106168. <a href="https://doi.org/10.1016/j.jece.2021.106168" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jece.2021.106168</a>
  51. <bold>Hacioglu M, Oyardı Ö, Yilmaz F, Nagl M</bold>. Comparative fungicidal activities of n-chlorotaurine and conventional antiseptics against Candida spp. isolated from vulvovaginal candidiasis. J Fungi. 2022 Jul; 8:682. <a href="https://doi.org/10.3390/jof8070682" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jof8070682</a>
  52. <bold>Hamad AA</bold>. In vitro evaluation the efficacy of some new plant extracts and biocides on the viability of Acanthamoeba castellanii. Protist. 2023 Mar; 174:125966. <a href="https://doi.org/10.1016/j.protis.2023.125966" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.protis.2023.125966</a>
  53. <bold>Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ</bold>. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother. 2007 Jan; 60:145–147. <a href="https://doi.org/10.1093/jac/dkm167" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jac/dkm167</a>
  54. <bold>Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, Webber M</bold>. Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. mBio. 2018 Sep; 9:e00894-18. <a href="https://doi.org/10.1128/mBio.00894-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/mBio.00894-18</a>
  55. <bold>Hashemi MM, Savage PB, et al</bold>. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front Microbiol. 2019 Feb; 10:210. <a href="https://doi.org/10.3389/fmicb.2019.00210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2019.00210</a>
  56. <bold>Hassan KA, Liu Q, Henderson PJ, Paulsen IT</bold>. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015 Nov; 6:e01982-14. <a href="https://doi.org/10.1128/mBio.01982-14" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/mBio.01982-14</a>
  57. <bold>Haydari M, Bardakci AG, Koldsland OC, Aass AM, Sandvik L, Preus HR</bold>. Comparing the effect of 0.06% -, 0.12% and 0.2% chlorhexidine on plaque, bleeding and side effects in an experimental gingivitis model: a parallel group, double masked randomized clinical trial. BMC Oral Health. 2017 Jul; 17:118. <a href="https://doi.org/10.1186/s12903-017-0400-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12903-017-0400-7</a>
  58. <bold>He S, Zhan Z, Shi C, Wang S, Shi X</bold>. Ethanol at subinhibitory concentrations enhances biofilm formation in Salmonella Enteritidis. Foods. 2022 Aug; 11:2237. <a href="https://doi.org/10.3390/foods11152237" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/foods11152237</a>
  59. <bold>Heir E, Sundheim G, Holck AL</bold>. The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol. 1999 Aug; 86:378–388. <a href="https://doi.org/10.1046/j.1365-2672.1999.00672.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1046/j.1365-2672.1999.00672.x</a>
  60. <bold>Heir E, Sundheim G, Holck AL</bold>. The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett. 1998 Oct; 163:49–56. <a href="https://doi.org/10.1111/j.1574-6968.1998.tb13025.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1998.tb13025.x</a>
  61. <bold>Hernández A, Ruiz FM, Romero A, Martínez JL</bold>. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog. 2011 Nov; 7:e1002103. <a href="https://doi.org/10.1371/journal.ppat.1002103" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.ppat.1002103</a>
  62. <bold>Hirose R, Nakaya T, Naito Y, Daidoji T, Watanabe Y, Yasuda H, Itoh Y</bold>. Viscosity is an important factor of resistance to alcohol-based disinfectants by pathogens present in mucus. Sci Rep. 2017 Oct; 7:13186. <a href="https://doi.org/10.1038/s41598-017-13732-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-017-13732-2</a>
  63. <bold>Hornschuh M, Zwicker P, Kramer A, Schaufler K, Heiden SE, Bohnert JA, Hubner NO</bold>. Extensively-drug-resistant Klebsiella pneumoniae ST307 outbreak strain from north-eastern Germany does not show increased tolerance to quaternary ammonium compounds and chlorhexidine. J Hosp Infect. 2021 Feb; 113:52–58. <a href="https://doi.org/10.1016/j.jhin.2021.01.032" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2021.01.032</a>
  64. <bold>Htun HL, Hon PY, Holden MTG, Ang B, Chow A</bold>. Chlorhexidine and octenidine use, carriage of qac genes, and reduced antiseptic susceptibility in methicillin-resistant Staphylococcus aureus isolates from a healthcare network. Clin Microbiol Infect. 2019 Jul; 25:1154.e1–1154.e7. <a href="https://doi.org/10.1016/j.cmi.2018.12.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cmi.2018.12.036</a>
  65. <bold>Huang J, McDevitt D, et al</bold>. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother. 2004 Mar; 48:909–917. <a href="https://doi.org/10.1128/aac.48.3.909-917.2004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.48.3.909-917.2004</a>
  66. <bold>Huang YH, Huang JT</bold>. Use of chlorhexidine to eradicate oropharyngeal SARS-CoV-2 in COVID-19 patients. J Med Virol. 2021 Dec; 93:4370–4373. <a href="https://doi.org/10.1002/jmv.26954" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jmv.26954</a>
  67. <bold>Hubner NO, Matthes R, Koban I, Randler C, Muller G, Bender C, Kramer A</bold>. Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol. 2010; 23 (Suppl. 1):28–34. <a href="https://doi.org/10.1159/000318265" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000318265</a>
  68. <bold>Hubner NO, Siebert J, Kramer A</bold>. Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol. 2010; 23:244–258. <a href="https://doi.org/10.1159/000314699" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000314699</a>
  69. <bold>Junka A, Bartoszewicz M, Smutnicka D, Secewicz A, Szymczyk P</bold>. Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J. 2014 Dec; 11:730–734. <a href="https://doi.org/10.1111/iwj.12057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/iwj.12057</a>
  70. <bold>Kapalschinski N, Seipp HM, Kückelhaus M, Harati KK, Kolbenschlag JJ, Daigeler A, Jacobsen F, Lehnhardt M, Hirsch T</bold>. Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus. J Wound Care. 2017 Apr; 26:184–187. <a href="https://doi.org/10.12968/jowc.2017.26.4.184" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.12968/jowc.2017.26.4.184</a>
  71. <bold>Karpiński TM, Korbecka-Paczkowska M, Stasiewicz M, Mrozikiewicz AE, Włodkowic D, Cielecka-Piontek J</bold>. Activity of antiseptics against Pseudomonas aeruginosa and its adaptation potential. Antibiotics (Basel). 2025 Jan; 14:30. <a href="https://doi.org/10.3390/antibiot-ics14010030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiot-ics14010030</a>
  72. <bold>Kean R, McKloud E, Townsend EM, Sherry L, Delaney C, Jones BL, Ramage G</bold>. The comparative efficacy of antiseptics against Candida auris biofilms. Int J Antimicrob Agents. 2018 Aug; 52:673–677. <a href="https://doi.org/10.1016/j.ijantimicag.2018.05.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2018.05.007</a>
  73. <bold>Kernberger-Fischer IA, Krischek C, Strommenger B, Fiegen U, Beyerbach M, Kreienbrock L, Klein G, Kehrenberg C</bold>. Susceptibility of methicillin-resistant and -susceptible Staphylococcus aureus isolates of various clonal lineages from Germany to eight biocides. Appl Environ Microbiol. 2018 Sep; 84:e00799-00718. <a href="https://doi.org/10.1128/AEM.00799-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.00799-18</a>
  74. <bold>Komine A, Yamaguchi E, Okamoto N, Yamamoto K</bold>. Virucidal activity of oral care products against SARS-CoV-2 in vitro. J Oral Maxillofac Surg Med Pathol. 2021 Oct; 33:475–477. <a href="https://doi.org/10.1016/j.ajoms.2021.02.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ajoms.2021.02.002</a>
  75. <bold>Krajewska J, Tyski S, Laudy AE</bold>. In vitro resistance-predicting studies and in vitro resistance-related parameters-a hit-to-lead perspective. Pharmaceuticals (Basel). 2024 Aug; 17:1068. <a href="https://doi.org/10.3390/ph17081068" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ph17081068</a>
  76. <bold>Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O</bold>. Consensus on wound antisepsis: update 2018. Skin Pharmacol Physiol. 2018; 31:28–58. <a href="https://doi.org/10.1159/000481545" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000481545</a>
  77. <bold>Kuznetsova MV, Nesterova LY, Mihailovskaya VS, Selivanova PA, Kochergina DA, Karipova MO, Valtsifer IV, Averkina AS, Starčič Erjavec M</bold>. Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: sensitivity to chlorhexidine-based biocides and prevalence of efflux pump genes. Int J Mol Sci. 2025 Jan; 26:355. <a href="https://doi.org/10.3390/ijms26010355" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms26010355</a>
  78. <bold>LaBreck PT, Bochi-Layec AC, Stanbro J, Dabbah-Krancher G, Simons MP, Merrell DS</bold>. Systematic analysis of efflux pump-mediated antiseptic resistance in Staphylococcus aureus suggests a need for greater antiseptic stewardship. mSphere. 2020 May; 5:e00959-19. <a href="https://doi.org/10.1128/mSphere.00959-19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/mSphere.00959-19</a>
  79. <bold>Lachapelle JM, Castel O, Casado AF, Leroy B, Micali G, Tennstedt D, Lambert J</bold>. Antiseptics in the era of bacterial resistance: a focus on povidone iodine. Clin Pract. 2013; 10:579–592. <a href="https://doi.org/10.2217/CPR.13.50" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2217/CPR.13.50</a>
  80. <bold>Lerma LL, Benomar N, Valenzuela AS, Casado Muñoz Mdel C, Gálvez A, Abriouel H</bold>. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014 Oct; 44:249–257. <a href="https://doi.org/10.1016/j.fm.2014.06.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fm.2014.06.009</a>
  81. <bold>Lescat M, Magnan M, Kenmoe S, Nordmann P, Poirel L</bold>. Co-lateral effect of octenidine, chlorhexidine and colistin selective pressures on four Enterobacterial species: a comparative genomic analysis. Antibiotics (Basel). 2021 Jan; 11:50. <a href="https://doi.org/10.3390/antibiotics11010050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11010050</a>
  82. <bold>Lutz JT, Diener IV, Freiberg K, Zillmann R, Shah-Hosseini K, Seifert H, Berger-Schreck B, Wisplinghoff H</bold>. Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: a randomized, clinical trial. Infection. 2016 Aug; 44:707–712. <a href="https://doi.org/10.1007/s15010-016-0899-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s15010-016-0899-6</a>
  83. <bold>Łukomska-Szymańska M, Sokołowski J, Łapińska B</bold>. Chlorhexidine–mechanism of action and its application to dentistry. J Stoma. 2017 Dec; 70:405–417. <a href="https://doi.org/10.5604/01.3001.0010.5698" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5604/01.3001.0010.5698</a>
  84. <bold>Machuca J, Lopez-Rojas R, Fernandez-Cuenca F, Pascual Á</bold>. Comparative activity of a polyhexanide-betaine solution against biofilms produced by multidrug-resistant bacteria belonging to high-risk clones. J Hosp Infect. 2019 Oct; 103:e92–e96. <a href="https://doi.org/10.1016/j.jhin.2019.04.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2019.04.008</a>
  85. <bold>Malanovic N, Ön A, Pabst G, Zellner A, Lohner K</bold>. Octenidine: novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int J Antimicrob Agents. 2020 Jul; 56:106146. <a href="https://doi.org/10.1016/j.ijantimicag.2020.106146" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2020.106146</a>
  86. <bold>Maseda H, Hashida Y, Konaka R, Shirai A, Kourai H</bold>. Mutational upregulation of a resistance-nodulation-cell division-type multidrug efflux pump, SdeAB, upon exposure to a biocide, cetylpyridinium chloride, and antibiotic resistance in Serratia marcescens. Antimicrob Agents Chemother. 2009 Oct; 53:5230–5235. <a href="https://doi.org/10.1128/aac.00631-09" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.00631-09</a>
  87. <bold>Mcmurry LM, Oethinger M, Levy SB</bold>. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett. 1998 Aug; 166:305–309. <a href="https://doi.org/10.1111/j.1574-6968.1998.tb13905.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1998.tb13905.x</a>
  88. <bold>Meyer C, Lucaβen K, Gerson S, Xanthopoulou K, Wille T, Seifert H, Higgins PG</bold>. Contribution of RND-type efflux pumps in reduced susceptibility to biocides in Acinetobacter baumannii. Antibiotics (Basel). 2022 Nov; 11:1653. <a href="https://doi.org/10.3390/antibiotics11111635" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/antibiotics11111635</a>
  89. <bold>Moore G, Schelenz S, Borman AM, Johnson EM, Brown CS</bold>. Yeasticidal activity of chemical disinfectants and antiseptics against Candida auris. J Hosp Infect. 2017 Dec; 97:371–375. <a href="https://doi.org/10.1016/j.jhin.2017.08.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2017.08.019</a>
  90. <bold>Morita Y, Murata T, Mima T, Shiota S, Kuroda T, Mizushima T, Gotoh N, Nishino T, Tsuchiya T</bold>. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother. 2003 Apr; 51:991–994. <a href="https://doi.org/10.1093/jac/dkg173" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jac/dkg173</a>
  91. <bold>Narayanan A, Nair MS, Karumathil DP, Baskaran SA, Venkitanarayanan K, Amalaradjou MA</bold>. Inactivation of Acinetobacter baumannii biofilms on polystyrene, stainless steel, and urinary catheters by octenidine dihydrochloride. Front Microbiol. 2016 May; 7:847. <a href="https://doi.org/10.3389/fmicb.2016.00847" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2016.00847</a>
  92. <bold>Nishino K, Yamaguchi A</bold>. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol. 2001 Oct; 183:5803–5812. <a href="https://doi.org/10.1128/jb.183.20.5803-5812.2001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/jb.183.20.5803-5812.2001</a>
  93. <bold>Noguchi N, Hase M, Kitta M, Sasatsu M, Deguchi K, Kono M</bold>. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 1999 Feb; 172:247–253. <a href="https://doi.org/10.1111/j.1574-6968.1999.tb13475.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1999.tb13475.x</a>
  94. <bold>Oduwole KO, Glynn AA, Molony DC, Murray D, Rowe S, Holland LM, McCormack DJ, O’Gara JP</bold>. Anti-biofilm activity of sub-inhibitory povidone-iodine concentrations against Staphylococcus epidermidis and Staphylococcus aureus. J Orthop Res. 2010 Jul; 28:1252–1256. <a href="https://doi.org/10.1002/jor.21110" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jor.21110</a>
  95. <bold>Pallotto C, Baldelli F, et al</bold>. Daily bathing with 4% chlorhexidine gluconate in intensive care settings: a randomized controlled trial. Clin Microbiol Infect. 2019 Jun; 25:705–710. <a href="https://doi.org/10.1016/j.cmi.2018.09.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cmi.2018.09.012</a>
  96. <bold>Parikh SR, Parikh RS</bold>. Chemical disinfectants in ophthalmic practice. Indian J Ophthalmol. 2021 Mar; 69:510–516. <a href="https://doi.org/10.4103/ijo.IJO_1549_20" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4103/ijo.IJO_1549_20</a>
  97. <bold>Perez-Palacios P, Gual-de-Torrella A, Delgado-Valverde M, Oteo-Iglesias J, Hidalgo-Diaz C, Pascual A, Fernandez-Cuenca F</bold>. Transfer of plasmids harbouring bla(OXA-48-like) carbapenemase genes in biofilm-growing Klebsiella pneumoniae: effect of biocide exposure. Microbiol Res. 2022 Feb; 254:126894. <a href="https://doi.org/10.1016/j.micres.2021.126894" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micres.2021.126894</a>
  98. <bold>Pidot SJ, Stinear TP, et al</bold>. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med. 2018 Apr; 10:eaar6115. <a href="https://doi.org/10.1126/scitranslmed.aar6115" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/scitranslmed.aar6115</a>
  99. <bold>Ponnachan P, Vinod V, Pullanhi U, Varma P, Singh S, Biswas R, Kumar A</bold>. Antifungal activity of octenidine dihydrochloride and ultraviolet-C light against multidrug-resistant Candida auris. J Hosp Infect. 2019 Feb; 102:120–124. <a href="https://doi.org/10.1016/j.jhin.2018.09.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2018.09.008</a>
  100. <bold>Qingzhong L, Huanqiang Z, Lizhong H, Wen S, Qiong W, Yuxing N</bold>. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis. 2015 May; 82:278–283. <a href="https://doi.org/10.1016/j.diagmicrobio.2015.03.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.diagmicrobio.2015.03.023</a>
  101. <bold>Rembe JD, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK</bold>. Antimicrobial hypochlorous wound irrigation solutions demonstrate lower anti-biofilm efficacy against bacterial biofilm in a complex in-vitro human plasma biofilm model (hpBIOM) than common wound antimicrobials. Front Microbiol. 2020 May; 11:564513. <a href="https://doi.org/10.3389/fmicb.2020.564513" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2020.564513</a>
  102. <bold>Rensch U, Nishino K, Klein G, Kehrenberg C</bold>. Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan. Int J Antimicrob Agents. 2014 Jun; 44:179–180. <a href="https://doi.org/10.1016/j.ijantimicag.2014.04.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2014.04.015</a>
  103. <bold>Renzoni A, François P, et al</bold>. Impact of exposure of methicillin-resistant Staphylococcus aureus to polyhexanide in vitro and in vivo. Antimicrob Agents Chemother. 2017 Mar; 61:e00272-17. <a href="https://doi.org/10.1128/AAC.00272-17" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.00272-17</a>
  104. <bold>Robertson GT, Doyle TB, Lynch AS</bold>. Use of an efflux-deficient streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother. 2005 Nov; 49:4781–4783. <a href="https://doi.org/10.1128/aac.49.11.4781-4783.2005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.49.11.4781-4783.2005</a>
  105. <bold>Romanova NA, Wolffs PF, Brovko LY, Griffiths MW</bold>. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol. 2006 May; 72:3498–3503. <a href="https://doi.org/10.1128/aem.72.5.3498-3503.2006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aem.72.5.3498-3503.2006</a>
  106. <bold>Şahiner A, Halat E, Alğın Yapar E</bold>. Comparison of bactericidal and fungicidal efficacy of antiseptic formulations according to EN 13727 and EN 13624 standards. Turk J Med Sci. 2019 Aug; 49:1564–1567. <a href="https://doi.org/10.3906/sag-1906-53" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3906/sag-1906-53</a>
  107. <bold>Sathiyamurthy S, Banerjee J, Godambe SV</bold>. Antiseptic use in the neonatal intensive care unit - a dilemma in clinical practice: an evidence based review. World J Clin Pediatr. 2016 May; 5:159–171. <a href="https://doi.org/10.5409/wjcp.v5.i2.159" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5409/wjcp.v5.i2.159</a>
  108. <bold>Schaumburg T, Köhler N, Breitenstein Y, Kolbe-Busch S, Hasenclever D, Chaberny IF</bold>. Effect of daily antiseptic bathing with octenidine on ICU-acquired bacteremia and ICU-acquired multidrug-resistant organisms: a multicenter, cluster-randomized, double-blind, placebo-controlled, cross-over study. Intensive Care Med. 2024 Jul; 50:2073–2082. <a href="https://doi.org/10.1007/s00134-024-07667-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00134-024-07667-2</a>
  109. <bold>Schweizer HP</bold>. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother. 1998 Feb; 42:394–398. <a href="https://doi.org/10.1128/aac.42.2.394" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.42.2.394</a>
  110. <bold>Semeshchenko D, Veiga MF, Visus M, Farinati A, Huespe I, Unit HHS, Buttaro MA, Slullitel PA</bold>. Povidone-iodine and silver nitrate are equally effective in eradicating staphylococcal biofilm grown on a titanium surface: an in-vitro analysis. J Hosp Infect. 2025 Jan; 155:185–191. <a href="https://doi.org/10.1016/j.jhin.2024.11.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2024.11.012</a>
  111. <bold>Shepherd JA, Parker MD</bold>. Repeat-exposure in vitro protocol to assess the risk of antimicrobial resistance (AMR) development from use of personal care products: case study using an antibacterial liquid handwash. J Microbiol Methods. 2023 Apr; 215:106851. <a href="https://doi.org/10.1016/j.mimet.2023.106851" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mimet.2023.106851</a>
  112. <bold>Shepherd MJ, Moore G, Wand ME, Sutton JM, Bock LJ</bold>. Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J Hosp Infect. 2018 Jan; 100:e23–e29. <a href="https://doi.org/10.1016/j.jhin.2018.03.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2018.03.037</a>
  113. <bold>Slipski CJ, Zhanel GG, Bay DC</bold>. Biocide selective TolC-independent efflux pumps in Enterobacteriaceae. J Membr Biol. 2018 Jan; 251:15–33. <a href="https://doi.org/10.1007/s00232-017-9992-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00232-017-9992-8</a>
  114. <bold>Smeets R, Pfefferle S, Büttner H, Knobloch JK, Lütgehetmann M</bold>. Impact of oral rinsing with octenidine based solution on SARS-CoV-2 loads in saliva of infected patients an exploratory study. Int J Environ Res Public Health. 2022 May; 19:5582. <a href="https://doi.org/10.3390/ijerph19095582" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijerph19095582</a>
  115. <bold>Spettel K, Willinger B, et al</bold>. In vitro long-term exposure to chlorhexidine or triclosan induces cross-resistance against azoles in Nakaseomyces glabratus. Antimicrob Resist Infect Control. 2025 Jan; 14:2. <a href="https://doi.org/10.1186/s13756-024-01511-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13756-024-01511-4</a>
  116. <bold>Srinivasan VB, Rajamohan G</bold>. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother. 2013 Jul; 57:4449–4462. <a href="https://doi.org/10.1128/aac.02284-12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.02284-12</a>
  117. <bold>Stauf R, Todt D, Steinmann E, Rath PM, Gabriel H, Steinmann J, Brill FHH</bold>. In-vitro activity of active ingredients of disinfectants against drug-resistant fungi. J Hosp Infect. 2019 Nov; 103:468–473. <a href="https://doi.org/10.1016/j.jhin.2019.07.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2019.07.013</a>
  118. <bold>Steinhauer K, Meister TL, Todt D, Krawczyk A, Paßvogel L, Becker B, Paulmann D, Bischoff B, Pfaender S, Brill FHH, Steinmann E</bold>. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J Hosp Infect. 2021 Mar; 111:180–183. <a href="https://doi.org/10.1016/j.jhin.2021.01.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2021.01.031</a>
  119. <bold>Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T</bold>. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother. 2005 Oct; 49:4362–4364. <a href="https://doi.org/10.1128/aac.49.10.4362-4364.2005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aac.49.10.4362-4364.2005</a>
  120. <bold>Suchomel M, Lenhardt A, Kampf G, Grisold A</bold>. Enterococcus hirae, Enterococcus faecium and Enterococcus faecalis show different sensitivities to typical biocidal agents used for disinfection. J Hosp Infect. 2019 Oct; 103:435–440. <a href="https://doi.org/10.1016/j.jhin.2019.08.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2019.08.014</a>
  121. <bold>Tag ElDein MA, Yassin AS, El-Tayeb O, Kashef MT</bold>. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2021 May; 40:2349–2361. <a href="https://doi.org/10.1007/s10096-021-04292-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10096-021-04292-5</a>
  122. <bold>Thangavelu A, Kaspar SS, Kathirvelu RP, Srinivasan B, Srinivasan S, Sundram R</bold>. Chlorhexidine: an elixir for periodontics. J Pharm Bioallied Sci. 2020 Jul; 12(Suppl. 1):S57–S59. <a href="https://doi.org/10.4103/jpbs.JPBS_162_20" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4103/jpbs.JPBS_162_20</a>
  123. <bold>Tong C, Hu H, Chen G, Li Z, Li A, Zhang J</bold>. Disinfectant resistance in bacteria: mechanisms, spread, and resolution strategies. Environ Res. 2021 Oct; 195:110897. <a href="https://doi.org/10.1016/j.envres.2021.110897" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envres.2021.110897</a>
  124. <bold>Tyski S, Bocian E, Laudy AE</bold>. Animal health protection - assessing antimicrobial activity of veterinary disinfectants and antiseptics and their compliance with European Standards: a narrative review. Pol J Microbiol. 2024 Aug; 73:413–431. <a href="https://doi.org/10.33073/pjm-2024-043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33073/pjm-2024-043</a>
  125. <bold>Tyski S, Bocian E, Laudy AE</bold>. Application of normative documents for determination of biocidal activity of disinfectants and antiseptics dedicated to the medical area: a narrative review. J Hosp Infect. 2022 Apr; 125:75–91. <a href="https://doi.org/10.1016/j.jhin.2022.03.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhin.2022.03.016</a>
  126. <bold>United States Pharmacopea</bold>. Disinfectants and Antiseptics &lt;1072&gt;. USP–NF. Rockville, MD: 2025. <a href="https://doi.org/10.31003/USPNF_M99792_01_01" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.31003/USPNF_M99792_01_01</a>
  127. <bold>Vaezi S.S., Poorazizi E., Tahmourespour A., Aminsharei F</bold>. Application of artificial neural networks to describe the combined effect of pH, time, NaCl and ethanol concentrations on the biofilm formation of Staphylococcus aureus. Microb. Pathog. 2020 Sep; 141:103986. <a href="https://doi.org/10.1016/j.micpath.2020.103986" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micpath.2020.103986</a>
  128. <bold>Wand M.E., Jamshidi S., Bock L.J., Rahman K.M., Sutton J.M</bold>. SmvA is an important efflux pump for cationic biocides in Klebsiella pneumoniae and other Enterobacteriaceae. Sci. Rep. 2019 Feb; 9:1344. <a href="https://doi.org/10.1038/s41598-018-37730-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-37730-0</a>
  129. <bold>Webber M.A., Randall L.P., Cooles S., Woodward M.J., Piddock L.J.V</bold>. Triclosan resistance in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother. 2008 Jul; 62:83-91. <a href="https://doi.org/10.1093/jac/dkn137" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/jac/dkn137</a>
  130. <bold>Wekerle M, Engel J, Walochnik J</bold>. Anti-Acanthamoeba disinfection: hands, surfaces and wounds. Int. J. Antimicrob. Agents. 2020;56:106122. <a href="https://doi.org/10.1016/j.ijantimicag.2020.106122" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2020.106122</a>
  131. <bold>Widmer AF, Jent P, et al</bold>. Povidone iodine vs chlorhexidine gluconate in alcohol for preoperative skin antisepsis: a randomized clinical trial. JAMA. 2024;332:541–549. <a href="https://doi.org/10.1001/jama.2024.8531" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1001/jama.2024.8531</a>
  132. <bold>Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC</bold>. PH influence on antibacterial efficacy of common antiseptic substances. Skin Pharmacol. Physiol. 2015;28:147–158. <a href="https://doi.org/10.1159/000367632" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1159/000367632</a>
  133. <bold>Williamson DA, Carter GP, Howden BP</bold>. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin. Microbiol. Rev. 2017;30:827–860. <a href="https://doi.org/10.1128/cmr.00112-16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/cmr.00112-16</a>
  134. <bold>Wu D, Lu R, Chen Y, Qiu J, Deng C, Tan Q</bold>. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2016;7:61–66. <a href="https://doi.org/10.1016/j.jgar.2016.07.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jgar.2016.07.011</a>
  135. <bold>Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H, Noh JY, Cheong HJ, Kim WJ</bold>. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J. Korean Med. Sci. 2020;35:e195. <a href="https://doi.org/10.3346/jkms.2020.35.e195" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3346/jkms.2020.35.e195</a>
  136. <bold>Zanatta F.B., Antoniazzi R.P., Rösing C.K</bold>. Staining and calculus formation after 0.12% chlorhexidine rinses in plaque-free and plaque-covered surfaces: a randomized trial. J. Appl. Oral Sci. 2010; 18:515–521. <a href="https://doi.org/10.1590/s1678-77572010000500015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1590/s1678-77572010000500015</a>
  137. <bold>Zhang Y., Zhao Y., Xu C., Zhang X., Li J., Dong G., Cao J., Zhou T</bold>. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int. J. Antimicrob. Agents. 2019; 53:864–867. <a href="https://doi.org/10.1016/j.ijantimicag.2019.02.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2019.02.012</a>
  138. <bold>Zheng X., Zhou T., et al</bold>. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China. Int. J. Antimicrob. Agents. 2022; 60:106605. <a href="https://doi.org/10.1016/j.ijantimicag.2022.106605" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijantimicag.2022.106605</a>
DOI: https://doi.org/10.2478/am-2025-0010 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 112 - 140
Submitted on: Apr 30, 2025
Accepted on: Sep 25, 2025
Published on: Sep 30, 2025
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Marlena Zawadzka, Agnieszka E. Laudy, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.