Have a personal or library account? Click to login
Antiseptics: Their Characteristics, Application and Challenges in the 21St Century Resulting from the Spread of Antimicrobial Resistance (AMR) Cover

Antiseptics: Their Characteristics, Application and Challenges in the 21St Century Resulting from the Spread of Antimicrobial Resistance (AMR)

Open Access
|Sep 2025

References

  1. Addetia A, Greninger AL, Adler A, Yuan S, Makhsous N, Qin X, Zerr DM. A novel, widespread qacA allele results in reduced chlorhexidine susceptibility in Staphylococcus epidermidis. Antimicrob Agents Chemother. 2019 Jan; 63:e02607-18. https://doi.org/10.1128/aac.02607-18
  2. Adkin P, Hitchcock A, Smith LJ, Walsh SE. Priming with biocides: a pathway to antibiotic resistance? J Appl Microbiol. 2022 Sep; 133:830–841. https://doi.org/10.1111/jam.15564
  3. Alonso B, Perez-Granda MJ, Rodriguez-Huerta A, Rodriguez C, Bouza E, Guembe M. The optimal ethanol lock therapy regimen for treatment of biofilm-associated catheter infections: an in-vitro study. J Hosp Infect. 2018 Jun; 100:e187–e195. https://doi.org/10.1016/j.jhin.2018.04.007
  4. Alvarado M, Martín-Galiano AJ, Ferrándiz MJ, Zaballos Á, de la Campa AG. Upregulation of the PatAB transporter confers fluoroquinolone resistance to Streptococcus pseudopneumoniae. Front Microbiol. 2017 Nov; 8:2074. https://doi.org/10.3389/fmicb.2017.02074
  5. Alvarez-Marin R, Aires-De-Sousa M, Nordmann P, Kieffer N, Poirel L. Antimicrobial activity of octenidine against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017 Dec; 36:2379–2383. https://doi.org/10.1007/s10096-017-3070-0
  6. Amalaradjou MA, Venkitanarayanan K. Antibiofilm effect of octenidine hydrochloride on Staphylococcus aureus, MRSA and VRSA. Pathogens. 2014 Jun; 3:404–416. https://doi.org/10.3390/pathogens3020404
  7. Arefin MK, Rumi SKNF, Uddin AKMN, Banu SS, Khan M, Kaiser A, Chowdhury JA, Khan MAS, Hasan MJ. Virucidal effect of povidone iodine on SARS-CoV-2 in nasopharynx: an open-label randomized clinical trial. Indian J Otolaryngol Head Neck Surg. 2022 Oct; 74:3283–3292. https://doi.org/10.1007/s12070-022-03106-0
  8. Auer DL, Cieplik F, et al. Phenotypic adaptation to antiseptics and effects on biofilm formation capacity and antibiotic resistance in clinical isolates of early colonizers in dental plaque. Antibiotics (Basel). 2022 May; 11:688. https://doi.org/10.3390/antibiotics11050688
  9. Augustin M, Herberger K, Wille A, Twarock S. Impact of human wound exudate on the bactericidal efficacy of commercial antiseptic products. J Wound Care. 2023 Jul; 32:422–427. https://doi.org/10.12968/jowc.2023.32.7.422
  10. Babalska ZL, Korbecka-Paczkowska M, Karpiński TM. Wound antiseptics and European guidelines for antiseptic application in wound treatment. Pharmaceuticals (Basel). 2021 Dec; 14:1253. https://doi.org/10.3390/ph14121253
  11. Barakat NA, Rasmy SA, Hosny A, Kashef MT. Effect of povidone-iodine and propanol-based mecetronium ethyl sulphate on antimicrobial resistance and virulence in Staphylococcus aureus. Antimicrob Resist Infect Control. 2022 Jun; 11:139. https://doi.org/10.1186/s13756-022-01178-9
  12. Bes TM, Nagano DS, Marchi AP, Camilo G, Perdigão-Neto LV, Martins RR, Levin AS, Costa SF. Conjugative transfer of plasmid p_8N_qac(MN687830.1) carrying qacA gene from Staphylococcus aureus to Escherichia coli C600: potential mechanism for spreading chlorhexidine resistance. Rev Inst Med Trop Sao Paulo. 2021 Nov; 63:e82. https://doi.org/10.1590/s1678-9946202163082
  13. Bjorland J, Steinum T, Sunde M, Waage S, Heir E. Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob Agents Chemother. 2003 Oct; 47:3046–3052. https://doi.org/10.1128/aac.47.10.3046-3052.2003
  14. Bleriot I, Tomas M, et al. Mechanisms of tolerance and resistance to chlorhexidine in clinical strains of Klebsiella pneumoniae producers of carbapenemase: role of new type II toxin-antitoxin system, PemIK. Toxins (Basel). 2020 Sep; 12:566. https://doi.org/10.3390/toxins12090566
  15. Bock LJ, Sutton JM, et al. Pseudomonas aeruginosa adapts to octenidine via a combination of efflux and membrane remodelling. Commun Biol. 2021 Oct; 4:1058. https://doi.org/10.1038/s42003-021-02566-4
  16. Boisson M, Mimoz O, et al. Chlorhexidine-alcohol compared with povidone-iodine-alcohol skin antisepsis protocols in major cardiac surgery: a randomized clinical trial. Intensive Care Med. 2024 Sep; 50:2114–2124. https://doi.org/10.1007/s00134-024-07693-0
  17. Bonn EL, Cieplik F, et al. Efficacy of a mouthwash containing CHX and CPC in SARS-CoV-2-positive patients: a randomized controlled clinical trial. J Dent Res. 2023 Apr; 102:608–615. https://doi.org/10.1177/00220345231156415
  18. Braga TM, Marujo PE, Pomba C, Lopes MFS. Involvement, and dissemination, of the enterococcal small multidrug resistance transporter QacZ in resistance to quaternary ammonium compounds. J Antimicrob Chemother. 2011 Jan; 66:283–286. https://doi.org/10.1093/jac/dkq460
  19. Brookes ZLS, Bescos R, Belfield LA, Ali K, Roberts A. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020 Aug; 103:103497. https://doi.org/10.1016/j.jdent.2020.103497
  20. Campana R, Baffone W. Assessment of antimicrobial activity in different sanitizer products commonly used in food processing environment and home setting. EC Microbiol. 2017; 12:260–268.
  21. Cheung HY, Wong MM, Cheung SH, Liang LY, Lam YW, Chiu SK. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS One. 2012 May; 7:e36659. https://doi.org/10.1371/journal.pone.0036659
  22. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrugefflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother. 2001 Feb; 45:428–432. https://doi.org/10.1128/aac.45.2.428-432.2001
  23. Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral bacteria – is there cause for concern? Front Microbiol. 2019 Apr; 10:587. https://doi.org/10.3389/fmicb.2019.00587
  24. Climo MW, Wong ES, et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013 Feb; 368:533–542. https://doi.org/10.1056/NEJMoa1113849
  25. Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J. 2013 Mar; 7:59–71. https://doi.org/10.2174/1874285801307010059
  26. Costa SS, Viveiros M, Pomba C, Couto I. Active antimicrobial efflux in Staphylococcus epidermidis: building up of resistance to fluoroquinolones and biocides in a major opportunistic pathogen. J Antimicrob Chemother. 2018 Jan; 73:320–324. https://doi.org/10.1093/jac/dkx400
  27. Cowley NL, Forbes S, Amezquita A, McClure P, Humphreys GJ, McBain AJ. Effects of formulation on microbicide potency and mitigation of the development of bacterial insusceptibility. Appl Environ Microbiol. 2015 Sep; 81:7330–7338. https://doi.org/10.1128/AEM.01985-15
  28. Curiao T, Marchi E, Viti C, Oggioni MR, Baquero F, Martinez JL, Coque TM. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob Agents Chemother. 2015 May; 59:3413–3423. https://doi.org/10.1128/aac.00187-15
  29. Denisiewicz B, Denisiewicz A. Hand hygiene experiences during the covid-19 pandemic in hospital condition. Forum Zakażeń. 2021 Jun; 12:109–114. https://doi.org/10.15374/FZ2021022
  30. Dindarloo K, Aghamolaei T, Ghanbarnejad A, Turki H, Hoseinvandtabar S, Pasalari H, Ghaffari HR. Pattern of disinfectants use and their adverse effects on the consumers after COVID-19 outbreak. J Environ Health Sci Eng. 2020 Sep; 18:1301–1310. https://doi.org/10.1007/s40201-020-00548-y
  31. Edmonds SL, Macinga DR, Mays-Suko P, Duley C, Rutter J, Jarvis WR, Arbogast JW. Comparative efficacy of commercially available alcohol-based hand rubs and World Health Organization-recommended hand rubs: formulation matters. Am J Infect Control. 2012 Sep; 40:521–525. https://doi.org/10.1016/j.ajic.2011.08.016
  32. Eggers M, Eickmann M, Kowalski K, Zorn J, Reimer K. Povidone-iodine hand wash and hand rub products demonstrated excellent in vitro virucidal efficacy against Ebola virus and modified vaccinia virus Ankara, the new European test virus for enveloped viruses. BMC Infect Dis. 2015 Jul; 15:375. https://doi.org/10.1186/s12879-015-1111-9
  33. Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther. 2018 Mar; 7:249–259. https://doi.org/10.1007/s40121-018-0200-7
  34. Eggers M, Koburger-Janssen T, Ward LS, Newby C, Müller S. Bactericidal and virucidal activity of povidone-iodine and chlorhexidine gluconate cleansers in an in vivo hand hygiene clinical simulation study. Infect Dis Ther. 2018 Feb; 7:235–247. https://doi.org/10.1007/s40121-018-0202-5
  35. Eigner F, Keller S, Schmitt S, Corti S, Nolff MC. Efficiency of octenidine dihydrochloride alcohol combination compared to ethanol based skin antiseptics for preoperative skin preparation in dogs. PLoS One. 2023 Aug; 18:e0293211. https://doi.org/10.1371/journal.pone.0293211
  36. Ekizoglu M, Sagiroglu M, Kilic E, Hascelik AG. An investigation of the bactericidal activity of chlorhexidine digluconate against multidrug-resistant hospital isolates. Turk J Med Sci. 2016 Jul; 46:903– 909. https://doi.org/10.3906/sag-1503-140
  37. Elekhnawy E, Sonbol F, Abdelaziz A, Elbanna T. Potential impact of biocide adaptation on selection of antibiotic resistance in bacterial isolates. Future J Pharm Sci. 2020 Nov; 6:1. https://doi.org/10.1186/s43094-020-00119-w
  38. European Pharmacopoeia. Ph Eur 11.5, monography 5.1.11. Determination of bactericidal, fungicidal or yesticidal activity of antiseptic medicinal products. 2024; 673–674.
  39. Fabre L, Sygusch J, et al. A “drug sweeping” state of the TriABC triclosan efflux pump from Pseudomonas aeruginosa. Structure. 2021 Feb; 29:261–274. https://doi.org/10.1016/j.str.2020.09.001
  40. Fang CT, Chen HC, Chuang YP, Chang SC, Wang JT. Cloning of a cation efflux pump gene associated with chlorhexidine resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2002 Jun; 46:2024–2028. https://doi.org/10.1128/AAC.46.6.2024-2028.2002
  41. Fang T, Jiang Y, et al. Unexpected inhibitory effect of octenidine dihydrochloride on candida albicans filamentation by impairing ergosterol biosynthesis and disrupting cell membrane integrity. Antibiotics (Basel). 2023 Dec; 12:1675. https://doi.org/10.3390/antibiotics12121675
  42. Frost SA, Alogso MC, Metcalfe L, Lynch JM, Hunt L, Sanghavi R, Alexandrou E, Hillman KM. Chlorhexidine bathing and health care-associated infections among adult intensive care patients: a systematic review and meta-analysis. Crit Care. 2016 Dec; 20:379. https://doi.org/10.1186/s13054-016-1553-5
  43. Früh R, Anderson A, Cieplik F, Hellwig E, Wittmer A, Vach K, Al-Ahmad A. Antibiotic resistance of selected bacteria after treatment of the supragingival biofilm with subinhibitory chlorhexidine concentrations. Antibiotics (Basel). 2022 Oct; 11:1420. https://doi.org/10.3390/antibiotics11101420
  44. Furi L, Oggioni M, et al. Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 2013 Jul; 57:3488–3497. https://doi.org/10.1128/AAC.00498-13
  45. Garratt I, Aranega-Bou P, Sutton JM, Moore G, Wand ME. Long-term exposure to octenidine in a simulated sink trap environment results in selection of Pseudomonas aeruginosa, Citrobacter, and Enterobacter isolates with mutations in efflux pump regulators. Appl Environ Microbiol. 2021 May; 87:e00210-21. https://doi.org/10.1128/AEM.00210-21
  46. Gregorchuk BSJ, Bay DC, et al. Phenotypic and multi-omics characterization of Escherichia coli K-12 adapted to chlorhexidine identifies the role of MlaA and other cell envelope alterations regulated by stress inducible pathways in chx resistance. Front Mol Biosci. 2021 Oct; 8:659058. https://doi.org/10.3389/fmolb.2021.659058
  47. Gugsch F, Tan CK, Oh DY, Passvogel L, Steinhauer K. Efficacy of octenidine- and chlorhexidine-based wash-mitts against Candida albicans and Candida auris - a comparative study. J Hosp Infect. 2024 Jan; 143:91–96. https://doi.org/10.1016/j.jhin.2023.10.018
  48. Guimarães MA, Coelho LR, Souza RR, Ferreira-Carvalho BT, Figueiredo MAS. Impact of biocides on biofilm formation by methicillin-resistant Staphylococcus aureus (ST239-SCCmecIII) isolates. Microbiol Immunol. 2012 Mar; 56:203–207. https://doi.org/10.1111/j.1348-0421.2011.00423.x
  49. Gülmez D, Brown JL, Butcher MC, Delaney C, Kean R, Ramage G, Short B. Investigating dual-species Candida auris and Staphylococcal biofilm antiseptic challenge. Antibiotics (Basel). 2022 Jul; 11:931. https://doi.org/10.3390/antibiotics11070931
  50. Guo J, Liao M, He B, Liu J, Hu X, Yan D, Wang J. Impact of the COVID-19 pandemic on household disinfectant consumption behaviors and related environmental concerns: a questionnaire-based survey in China. J Environ Chem Eng. 2021 Sep; 9:106168. https://doi.org/10.1016/j.jece.2021.106168
  51. Hacioglu M, Oyardı Ö, Yilmaz F, Nagl M. Comparative fungicidal activities of n-chlorotaurine and conventional antiseptics against Candida spp. isolated from vulvovaginal candidiasis. J Fungi. 2022 Jul; 8:682. https://doi.org/10.3390/jof8070682
  52. Hamad AA. In vitro evaluation the efficacy of some new plant extracts and biocides on the viability of Acanthamoeba castellanii. Protist. 2023 Mar; 174:125966. https://doi.org/10.1016/j.protis.2023.125966
  53. Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother. 2007 Jan; 60:145–147. https://doi.org/10.1093/jac/dkm167
  54. Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, Webber M. Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. mBio. 2018 Sep; 9:e00894-18. https://doi.org/10.1128/mBio.00894-18
  55. Hashemi MM, Savage PB, et al. Proteomic analysis of resistance of gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front Microbiol. 2019 Feb; 10:210. https://doi.org/10.3389/fmicb.2019.00210
  56. Hassan KA, Liu Q, Henderson PJ, Paulsen IT. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio. 2015 Nov; 6:e01982-14. https://doi.org/10.1128/mBio.01982-14
  57. Haydari M, Bardakci AG, Koldsland OC, Aass AM, Sandvik L, Preus HR. Comparing the effect of 0.06% -, 0.12% and 0.2% chlorhexidine on plaque, bleeding and side effects in an experimental gingivitis model: a parallel group, double masked randomized clinical trial. BMC Oral Health. 2017 Jul; 17:118. https://doi.org/10.1186/s12903-017-0400-7
  58. He S, Zhan Z, Shi C, Wang S, Shi X. Ethanol at subinhibitory concentrations enhances biofilm formation in Salmonella Enteritidis. Foods. 2022 Aug; 11:2237. https://doi.org/10.3390/foods11152237
  59. Heir E, Sundheim G, Holck AL. The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J Appl Microbiol. 1999 Aug; 86:378–388. https://doi.org/10.1046/j.1365-2672.1999.00672.x
  60. Heir E, Sundheim G, Holck AL. The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol Lett. 1998 Oct; 163:49–56. https://doi.org/10.1111/j.1574-6968.1998.tb13025.x
  61. Hernández A, Ruiz FM, Romero A, Martínez JL. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog. 2011 Nov; 7:e1002103. https://doi.org/10.1371/journal.ppat.1002103
  62. Hirose R, Nakaya T, Naito Y, Daidoji T, Watanabe Y, Yasuda H, Itoh Y. Viscosity is an important factor of resistance to alcohol-based disinfectants by pathogens present in mucus. Sci Rep. 2017 Oct; 7:13186. https://doi.org/10.1038/s41598-017-13732-2
  63. Hornschuh M, Zwicker P, Kramer A, Schaufler K, Heiden SE, Bohnert JA, Hubner NO. Extensively-drug-resistant Klebsiella pneumoniae ST307 outbreak strain from north-eastern Germany does not show increased tolerance to quaternary ammonium compounds and chlorhexidine. J Hosp Infect. 2021 Feb; 113:52–58. https://doi.org/10.1016/j.jhin.2021.01.032
  64. Htun HL, Hon PY, Holden MTG, Ang B, Chow A. Chlorhexidine and octenidine use, carriage of qac genes, and reduced antiseptic susceptibility in methicillin-resistant Staphylococcus aureus isolates from a healthcare network. Clin Microbiol Infect. 2019 Jul; 25:1154.e1–1154.e7. https://doi.org/10.1016/j.cmi.2018.12.036
  65. Huang J, McDevitt D, et al. Novel chromosomally encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob Agents Chemother. 2004 Mar; 48:909–917. https://doi.org/10.1128/aac.48.3.909-917.2004
  66. Huang YH, Huang JT. Use of chlorhexidine to eradicate oropharyngeal SARS-CoV-2 in COVID-19 patients. J Med Virol. 2021 Dec; 93:4370–4373. https://doi.org/10.1002/jmv.26954
  67. Hubner NO, Matthes R, Koban I, Randler C, Muller G, Bender C, Kramer A. Efficacy of chlorhexidine, polihexanide and tissue-tolerable plasma against Pseudomonas aeruginosa biofilms grown on polystyrene and silicone materials. Skin Pharmacol Physiol. 2010; 23 (Suppl. 1):28–34. https://doi.org/10.1159/000318265
  68. Hubner NO, Siebert J, Kramer A. Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol. 2010; 23:244–258. https://doi.org/10.1159/000314699
  69. Junka A, Bartoszewicz M, Smutnicka D, Secewicz A, Szymczyk P. Efficacy of antiseptics containing povidone-iodine, octenidine dihydrochloride and ethacridine lactate against biofilm formed by Pseudomonas aeruginosa and Staphylococcus aureus measured with the novel biofilm-oriented antiseptics test. Int Wound J. 2014 Dec; 11:730–734. https://doi.org/10.1111/iwj.12057
  70. Kapalschinski N, Seipp HM, Kückelhaus M, Harati KK, Kolbenschlag JJ, Daigeler A, Jacobsen F, Lehnhardt M, Hirsch T. Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus. J Wound Care. 2017 Apr; 26:184–187. https://doi.org/10.12968/jowc.2017.26.4.184
  71. Karpiński TM, Korbecka-Paczkowska M, Stasiewicz M, Mrozikiewicz AE, Włodkowic D, Cielecka-Piontek J. Activity of antiseptics against Pseudomonas aeruginosa and its adaptation potential. Antibiotics (Basel). 2025 Jan; 14:30. https://doi.org/10.3390/antibiot-ics14010030
  72. Kean R, McKloud E, Townsend EM, Sherry L, Delaney C, Jones BL, Ramage G. The comparative efficacy of antiseptics against Candida auris biofilms. Int J Antimicrob Agents. 2018 Aug; 52:673–677. https://doi.org/10.1016/j.ijantimicag.2018.05.007
  73. Kernberger-Fischer IA, Krischek C, Strommenger B, Fiegen U, Beyerbach M, Kreienbrock L, Klein G, Kehrenberg C. Susceptibility of methicillin-resistant and -susceptible Staphylococcus aureus isolates of various clonal lineages from Germany to eight biocides. Appl Environ Microbiol. 2018 Sep; 84:e00799-00718. https://doi.org/10.1128/AEM.00799-18
  74. Komine A, Yamaguchi E, Okamoto N, Yamamoto K. Virucidal activity of oral care products against SARS-CoV-2 in vitro. J Oral Maxillofac Surg Med Pathol. 2021 Oct; 33:475–477. https://doi.org/10.1016/j.ajoms.2021.02.002
  75. Krajewska J, Tyski S, Laudy AE. In vitro resistance-predicting studies and in vitro resistance-related parameters-a hit-to-lead perspective. Pharmaceuticals (Basel). 2024 Aug; 17:1068. https://doi.org/10.3390/ph17081068
  76. Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O. Consensus on wound antisepsis: update 2018. Skin Pharmacol Physiol. 2018; 31:28–58. https://doi.org/10.1159/000481545
  77. Kuznetsova MV, Nesterova LY, Mihailovskaya VS, Selivanova PA, Kochergina DA, Karipova MO, Valtsifer IV, Averkina AS, Starčič Erjavec M. Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: sensitivity to chlorhexidine-based biocides and prevalence of efflux pump genes. Int J Mol Sci. 2025 Jan; 26:355. https://doi.org/10.3390/ijms26010355
  78. LaBreck PT, Bochi-Layec AC, Stanbro J, Dabbah-Krancher G, Simons MP, Merrell DS. Systematic analysis of efflux pump-mediated antiseptic resistance in Staphylococcus aureus suggests a need for greater antiseptic stewardship. mSphere. 2020 May; 5:e00959-19. https://doi.org/10.1128/mSphere.00959-19
  79. Lachapelle JM, Castel O, Casado AF, Leroy B, Micali G, Tennstedt D, Lambert J. Antiseptics in the era of bacterial resistance: a focus on povidone iodine. Clin Pract. 2013; 10:579–592. https://doi.org/10.2217/CPR.13.50
  80. Lerma LL, Benomar N, Valenzuela AS, Casado Muñoz Mdel C, Gálvez A, Abriouel H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014 Oct; 44:249–257. https://doi.org/10.1016/j.fm.2014.06.009
  81. Lescat M, Magnan M, Kenmoe S, Nordmann P, Poirel L. Co-lateral effect of octenidine, chlorhexidine and colistin selective pressures on four Enterobacterial species: a comparative genomic analysis. Antibiotics (Basel). 2021 Jan; 11:50. https://doi.org/10.3390/antibiotics11010050
  82. Lutz JT, Diener IV, Freiberg K, Zillmann R, Shah-Hosseini K, Seifert H, Berger-Schreck B, Wisplinghoff H. Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: a randomized, clinical trial. Infection. 2016 Aug; 44:707–712. https://doi.org/10.1007/s15010-016-0899-6
  83. Łukomska-Szymańska M, Sokołowski J, Łapińska B. Chlorhexidine–mechanism of action and its application to dentistry. J Stoma. 2017 Dec; 70:405–417. https://doi.org/10.5604/01.3001.0010.5698
  84. Machuca J, Lopez-Rojas R, Fernandez-Cuenca F, Pascual Á. Comparative activity of a polyhexanide-betaine solution against biofilms produced by multidrug-resistant bacteria belonging to high-risk clones. J Hosp Infect. 2019 Oct; 103:e92–e96. https://doi.org/10.1016/j.jhin.2019.04.008
  85. Malanovic N, Ön A, Pabst G, Zellner A, Lohner K. Octenidine: novel insights into the detailed killing mechanism of Gram-negative bacteria at a cellular and molecular level. Int J Antimicrob Agents. 2020 Jul; 56:106146. https://doi.org/10.1016/j.ijantimicag.2020.106146
  86. Maseda H, Hashida Y, Konaka R, Shirai A, Kourai H. Mutational upregulation of a resistance-nodulation-cell division-type multidrug efflux pump, SdeAB, upon exposure to a biocide, cetylpyridinium chloride, and antibiotic resistance in Serratia marcescens. Antimicrob Agents Chemother. 2009 Oct; 53:5230–5235. https://doi.org/10.1128/aac.00631-09
  87. Mcmurry LM, Oethinger M, Levy SB. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett. 1998 Aug; 166:305–309. https://doi.org/10.1111/j.1574-6968.1998.tb13905.x
  88. Meyer C, Lucaβen K, Gerson S, Xanthopoulou K, Wille T, Seifert H, Higgins PG. Contribution of RND-type efflux pumps in reduced susceptibility to biocides in Acinetobacter baumannii. Antibiotics (Basel). 2022 Nov; 11:1653. https://doi.org/10.3390/antibiotics11111635
  89. Moore G, Schelenz S, Borman AM, Johnson EM, Brown CS. Yeasticidal activity of chemical disinfectants and antiseptics against Candida auris. J Hosp Infect. 2017 Dec; 97:371–375. https://doi.org/10.1016/j.jhin.2017.08.019
  90. Morita Y, Murata T, Mima T, Shiota S, Kuroda T, Mizushima T, Gotoh N, Nishino T, Tsuchiya T. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother. 2003 Apr; 51:991–994. https://doi.org/10.1093/jac/dkg173
  91. Narayanan A, Nair MS, Karumathil DP, Baskaran SA, Venkitanarayanan K, Amalaradjou MA. Inactivation of Acinetobacter baumannii biofilms on polystyrene, stainless steel, and urinary catheters by octenidine dihydrochloride. Front Microbiol. 2016 May; 7:847. https://doi.org/10.3389/fmicb.2016.00847
  92. Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol. 2001 Oct; 183:5803–5812. https://doi.org/10.1128/jb.183.20.5803-5812.2001
  93. Noguchi N, Hase M, Kitta M, Sasatsu M, Deguchi K, Kono M. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 1999 Feb; 172:247–253. https://doi.org/10.1111/j.1574-6968.1999.tb13475.x
  94. Oduwole KO, Glynn AA, Molony DC, Murray D, Rowe S, Holland LM, McCormack DJ, O’Gara JP. Anti-biofilm activity of sub-inhibitory povidone-iodine concentrations against Staphylococcus epidermidis and Staphylococcus aureus. J Orthop Res. 2010 Jul; 28:1252–1256. https://doi.org/10.1002/jor.21110
  95. Pallotto C, Baldelli F, et al. Daily bathing with 4% chlorhexidine gluconate in intensive care settings: a randomized controlled trial. Clin Microbiol Infect. 2019 Jun; 25:705–710. https://doi.org/10.1016/j.cmi.2018.09.012
  96. Parikh SR, Parikh RS. Chemical disinfectants in ophthalmic practice. Indian J Ophthalmol. 2021 Mar; 69:510–516. https://doi.org/10.4103/ijo.IJO_1549_20
  97. Perez-Palacios P, Gual-de-Torrella A, Delgado-Valverde M, Oteo-Iglesias J, Hidalgo-Diaz C, Pascual A, Fernandez-Cuenca F. Transfer of plasmids harbouring bla(OXA-48-like) carbapenemase genes in biofilm-growing Klebsiella pneumoniae: effect of biocide exposure. Microbiol Res. 2022 Feb; 254:126894. https://doi.org/10.1016/j.micres.2021.126894
  98. Pidot SJ, Stinear TP, et al. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med. 2018 Apr; 10:eaar6115. https://doi.org/10.1126/scitranslmed.aar6115
  99. Ponnachan P, Vinod V, Pullanhi U, Varma P, Singh S, Biswas R, Kumar A. Antifungal activity of octenidine dihydrochloride and ultraviolet-C light against multidrug-resistant Candida auris. J Hosp Infect. 2019 Feb; 102:120–124. https://doi.org/10.1016/j.jhin.2018.09.008
  100. Qingzhong L, Huanqiang Z, Lizhong H, Wen S, Qiong W, Yuxing N. Frequency of biocide-resistant genes and susceptibility to chlorhexidine in high-level mupirocin-resistant, methicillin-resistant Staphylococcus aureus (MuH MRSA). Diagn Microbiol Infect Dis. 2015 May; 82:278–283. https://doi.org/10.1016/j.diagmicrobio.2015.03.023
  101. Rembe JD, Huelsboemer L, Plattfaut I, Besser M, Stuermer EK. Antimicrobial hypochlorous wound irrigation solutions demonstrate lower anti-biofilm efficacy against bacterial biofilm in a complex in-vitro human plasma biofilm model (hpBIOM) than common wound antimicrobials. Front Microbiol. 2020 May; 11:564513. https://doi.org/10.3389/fmicb.2020.564513
  102. Rensch U, Nishino K, Klein G, Kehrenberg C. Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system AcrAB in decreased susceptibility to triclosan. Int J Antimicrob Agents. 2014 Jun; 44:179–180. https://doi.org/10.1016/j.ijantimicag.2014.04.015
  103. Renzoni A, François P, et al. Impact of exposure of methicillin-resistant Staphylococcus aureus to polyhexanide in vitro and in vivo. Antimicrob Agents Chemother. 2017 Mar; 61:e00272-17. https://doi.org/10.1128/AAC.00272-17
  104. Robertson GT, Doyle TB, Lynch AS. Use of an efflux-deficient streptococcus pneumoniae strain panel to identify ABC-class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother. 2005 Nov; 49:4781–4783. https://doi.org/10.1128/aac.49.11.4781-4783.2005
  105. Romanova NA, Wolffs PF, Brovko LY, Griffiths MW. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol. 2006 May; 72:3498–3503. https://doi.org/10.1128/aem.72.5.3498-3503.2006
  106. Şahiner A, Halat E, Alğın Yapar E. Comparison of bactericidal and fungicidal efficacy of antiseptic formulations according to EN 13727 and EN 13624 standards. Turk J Med Sci. 2019 Aug; 49:1564–1567. https://doi.org/10.3906/sag-1906-53
  107. Sathiyamurthy S, Banerjee J, Godambe SV. Antiseptic use in the neonatal intensive care unit - a dilemma in clinical practice: an evidence based review. World J Clin Pediatr. 2016 May; 5:159–171. https://doi.org/10.5409/wjcp.v5.i2.159
  108. Schaumburg T, Köhler N, Breitenstein Y, Kolbe-Busch S, Hasenclever D, Chaberny IF. Effect of daily antiseptic bathing with octenidine on ICU-acquired bacteremia and ICU-acquired multidrug-resistant organisms: a multicenter, cluster-randomized, double-blind, placebo-controlled, cross-over study. Intensive Care Med. 2024 Jul; 50:2073–2082. https://doi.org/10.1007/s00134-024-07667-2
  109. Schweizer HP. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother. 1998 Feb; 42:394–398. https://doi.org/10.1128/aac.42.2.394
  110. Semeshchenko D, Veiga MF, Visus M, Farinati A, Huespe I, Unit HHS, Buttaro MA, Slullitel PA. Povidone-iodine and silver nitrate are equally effective in eradicating staphylococcal biofilm grown on a titanium surface: an in-vitro analysis. J Hosp Infect. 2025 Jan; 155:185–191. https://doi.org/10.1016/j.jhin.2024.11.012
  111. Shepherd JA, Parker MD. Repeat-exposure in vitro protocol to assess the risk of antimicrobial resistance (AMR) development from use of personal care products: case study using an antibacterial liquid handwash. J Microbiol Methods. 2023 Apr; 215:106851. https://doi.org/10.1016/j.mimet.2023.106851
  112. Shepherd MJ, Moore G, Wand ME, Sutton JM, Bock LJ. Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J Hosp Infect. 2018 Jan; 100:e23–e29. https://doi.org/10.1016/j.jhin.2018.03.037
  113. Slipski CJ, Zhanel GG, Bay DC. Biocide selective TolC-independent efflux pumps in Enterobacteriaceae. J Membr Biol. 2018 Jan; 251:15–33. https://doi.org/10.1007/s00232-017-9992-8
  114. Smeets R, Pfefferle S, Büttner H, Knobloch JK, Lütgehetmann M. Impact of oral rinsing with octenidine based solution on SARS-CoV-2 loads in saliva of infected patients an exploratory study. Int J Environ Res Public Health. 2022 May; 19:5582. https://doi.org/10.3390/ijerph19095582
  115. Spettel K, Willinger B, et al. In vitro long-term exposure to chlorhexidine or triclosan induces cross-resistance against azoles in Nakaseomyces glabratus. Antimicrob Resist Infect Control. 2025 Jan; 14:2. https://doi.org/10.1186/s13756-024-01511-4
  116. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother. 2013 Jul; 57:4449–4462. https://doi.org/10.1128/aac.02284-12
  117. Stauf R, Todt D, Steinmann E, Rath PM, Gabriel H, Steinmann J, Brill FHH. In-vitro activity of active ingredients of disinfectants against drug-resistant fungi. J Hosp Infect. 2019 Nov; 103:468–473. https://doi.org/10.1016/j.jhin.2019.07.013
  118. Steinhauer K, Meister TL, Todt D, Krawczyk A, Paßvogel L, Becker B, Paulmann D, Bischoff B, Pfaender S, Brill FHH, Steinmann E. Comparison of the in-vitro efficacy of different mouthwash solutions targeting SARS-CoV-2 based on the European Standard EN 14476. J Hosp Infect. 2021 Mar; 111:180–183. https://doi.org/10.1016/j.jhin.2021.01.031
  119. Su XZ, Chen J, Mizushima T, Kuroda T, Tsuchiya T. AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother. 2005 Oct; 49:4362–4364. https://doi.org/10.1128/aac.49.10.4362-4364.2005
  120. Suchomel M, Lenhardt A, Kampf G, Grisold A. Enterococcus hirae, Enterococcus faecium and Enterococcus faecalis show different sensitivities to typical biocidal agents used for disinfection. J Hosp Infect. 2019 Oct; 103:435–440. https://doi.org/10.1016/j.jhin.2019.08.014
  121. Tag ElDein MA, Yassin AS, El-Tayeb O, Kashef MT. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2021 May; 40:2349–2361. https://doi.org/10.1007/s10096-021-04292-5
  122. Thangavelu A, Kaspar SS, Kathirvelu RP, Srinivasan B, Srinivasan S, Sundram R. Chlorhexidine: an elixir for periodontics. J Pharm Bioallied Sci. 2020 Jul; 12(Suppl. 1):S57–S59. https://doi.org/10.4103/jpbs.JPBS_162_20
  123. Tong C, Hu H, Chen G, Li Z, Li A, Zhang J. Disinfectant resistance in bacteria: mechanisms, spread, and resolution strategies. Environ Res. 2021 Oct; 195:110897. https://doi.org/10.1016/j.envres.2021.110897
  124. Tyski S, Bocian E, Laudy AE. Animal health protection - assessing antimicrobial activity of veterinary disinfectants and antiseptics and their compliance with European Standards: a narrative review. Pol J Microbiol. 2024 Aug; 73:413–431. https://doi.org/10.33073/pjm-2024-043
  125. Tyski S, Bocian E, Laudy AE. Application of normative documents for determination of biocidal activity of disinfectants and antiseptics dedicated to the medical area: a narrative review. J Hosp Infect. 2022 Apr; 125:75–91. https://doi.org/10.1016/j.jhin.2022.03.016
  126. United States Pharmacopea. Disinfectants and Antiseptics <1072>. USP–NF. Rockville, MD: 2025. https://doi.org/10.31003/USPNF_M99792_01_01
  127. Vaezi S.S., Poorazizi E., Tahmourespour A., Aminsharei F. Application of artificial neural networks to describe the combined effect of pH, time, NaCl and ethanol concentrations on the biofilm formation of Staphylococcus aureus. Microb. Pathog. 2020 Sep; 141:103986. https://doi.org/10.1016/j.micpath.2020.103986
  128. Wand M.E., Jamshidi S., Bock L.J., Rahman K.M., Sutton J.M. SmvA is an important efflux pump for cationic biocides in Klebsiella pneumoniae and other Enterobacteriaceae. Sci. Rep. 2019 Feb; 9:1344. https://doi.org/10.1038/s41598-018-37730-0
  129. Webber M.A., Randall L.P., Cooles S., Woodward M.J., Piddock L.J.V. Triclosan resistance in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother. 2008 Jul; 62:83-91. https://doi.org/10.1093/jac/dkn137
  130. Wekerle M, Engel J, Walochnik J. Anti-Acanthamoeba disinfection: hands, surfaces and wounds. Int. J. Antimicrob. Agents. 2020;56:106122. https://doi.org/10.1016/j.ijantimicag.2020.106122
  131. Widmer AF, Jent P, et al. Povidone iodine vs chlorhexidine gluconate in alcohol for preoperative skin antisepsis: a randomized clinical trial. JAMA. 2024;332:541–549. https://doi.org/10.1001/jama.2024.8531
  132. Wiegand C, Abel M, Ruth P, Elsner P, Hipler UC. PH influence on antibacterial efficacy of common antiseptic substances. Skin Pharmacol. Physiol. 2015;28:147–158. https://doi.org/10.1159/000367632
  133. Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin. Microbiol. Rev. 2017;30:827–860. https://doi.org/10.1128/cmr.00112-16
  134. Wu D, Lu R, Chen Y, Qiu J, Deng C, Tan Q. Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2016;7:61–66. https://doi.org/10.1016/j.jgar.2016.07.011
  135. Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H, Noh JY, Cheong HJ, Kim WJ. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J. Korean Med. Sci. 2020;35:e195. https://doi.org/10.3346/jkms.2020.35.e195
  136. Zanatta F.B., Antoniazzi R.P., Rösing C.K. Staining and calculus formation after 0.12% chlorhexidine rinses in plaque-free and plaque-covered surfaces: a randomized trial. J. Appl. Oral Sci. 2010; 18:515–521. https://doi.org/10.1590/s1678-77572010000500015
  137. Zhang Y., Zhao Y., Xu C., Zhang X., Li J., Dong G., Cao J., Zhou T. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int. J. Antimicrob. Agents. 2019; 53:864–867. https://doi.org/10.1016/j.ijantimicag.2019.02.012
  138. Zheng X., Zhou T., et al. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China. Int. J. Antimicrob. Agents. 2022; 60:106605. https://doi.org/10.1016/j.ijantimicag.2022.106605
DOI: https://doi.org/10.2478/am-2025-0010 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 112 - 140
Submitted on: Apr 30, 2025
Accepted on: Sep 25, 2025
Published on: Sep 30, 2025
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Marlena Zawadzka, Agnieszka E. Laudy, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.