References
- Abu-Qarn M., Eichler J., Sharon N.: Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol. 18(5), 544-50 (2008) DOI: 10.1016/j.sbi.2008.06.010
- Afzal M., Shafeeq S., Ahmed H., Kuipers O.P.: N-acetylgala-tosamine-mediated regulation of the aga operon by AgaR in Streptococcus pneumoniae. Front Cell Infect Microbiol. 6(SEP), 101 (2016) DOI:10.3389/fcimb.2016.00101
- Armbruster C.E., Forsyth-DeOrnellas V., Johnson A.O., Smith S.N., Zhao L., Wu W., Mobley H.L.T.: Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog. 13(6), e1006434 (2017) DOI:10.1371/journal. ppat.1006434
- Bateman A.: The SIS domain: A phosphosugar-binding domain. Trends Biochem Sci. 24(3), 94-5 (1999) DOI:10.1016/S0968-0004(99)01357-2
- Behren S., Schorlemer M., Schmidt G., Aktories K., Westerlind U.: Antibodies Directed Against GalNAc-and GlcNAc-O-Tyrosine Posttranslational Modifications – a New Tool for Glycoproteomic Detection. Chemistry - A European Journal. 29(29), e202300392 (2023) DOI:10.1002/chem.202300392
- Bernatchez S., Szymanski C.M., Ishiyama N., Li J., Jarrell H.C., Lau P.C., Berghuis A.M., Young N.M., Wakarchuk W.W.: A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. Journal of Biological Chemistry. 280(6), 4792-802 (2005) DOI:10.1074/jbc.M407767200
- Brinkkötter A., Klöß H., Alpert C.A., Lengeler J.W.: Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol Microbiol. 37(1), 125-35 (2000) DOI:10.1046/j.1365-2958.2000.01969.x
- Carraway K.L., Hull S.R.: Cell surface mucin-type glycoproteins and mucin-like domains. Glycobiology 1(2), 131-8 (1991) DOI:10.1093/glycob/1.2.131
- Elgrably-Weiss M., Schlosser-Silverman E., Rosenshine I., Altuvia S.: DeoT, a DeoR-type transcriptional regulator of multiple target genes. FEMS Microbiol Lett. 254(1), 141-8 (2006) DOI: 10.1111/j.1574-6968.2005.00020.x
- Freymond P.P., Lazarevic V., Soldo B., Karamata D.: Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: Its biosynthetic pathway and mode of attachment to peptidoglycan. Microbiology (NY) 152(6), 1709-1718 (2006) DOI:10.1099/mic.0.28814-0
- Gill D.J., Clausen H., Bard F.: Location, location, location: New insights into O-GalNAc protein glycosylation. Trends Cell Biol. 21(3) (2011) doi:10.1016/j.tcb.2010.11.004
- Gourlay L.J., Sommaruga S., Nardini M., Sperandeo P., Dehò G., Polissi A., Bolognesi M.: Probing the active site of the sugar isomerase domain from E. coli arabinose-5-phosphate isomerase via X-ray crystallography. Protein Science 19(12), 2430-2439 (2010) DOI: 10.1002/pro.525
- Hassan K.A., Paulsen I.T., Elbourne L.D.H., Ren Q., Cameron A.D., Henderson P.J.F. Microbial Solute Transporters⌧. In: Reference Module in Biomedical Sciences. (2014)
- De Jong H., Wösten M.M.S.M., Wennekes T.: Sweet impersonators: Molecular mimicry of host glycans by bacteria. Glycobiology 32(1), 11-22 (2022) DOI: 10.1093/glycob/cwab104
- Leyn S.A., Gao F., Yang C., Rodionov D.A.: N-acetylgalactosamine utilization pathway and regulon in proteobacteria: Genomic reconstruction and experimental characterization in Shewanella. Journal of Biological Chemistry 287(33), 28047-56 (2012) DOI: 10.1074/jbc.M112.382333
- Masoud H., Sadovskaya I., De Kievit T., Altman E., Richards J.C., Lam J.S.: Structural elucidation of the lipopolysaccharide core region of the O-chain-deficient mutant strain A28 from Pseudomonas aeruginosa serotype 06 (International Antigenic Typing Scheme). J Bacteriol. 177(23), 6718-26 (1995) DOI: 10.1128/jb.177.23.6718-6726.1995
- Meadow N.D., Fox D.K., Roseman S.: The bacterial phosphoenol-pyruvate: Glycose phosphotransferase system. Annu Rev Biochem. 59(1), 497-542 (1990) DOI: https://doi.org/10.1146/annurev.bi.59.070190.002433
- Mukherjee A., Mammel M.K., LeClerc J.E., Cebula T.A.: Altered utilization of N-acetyl-D-galactosamine by Escherichia coli O157:H7 from the 2006 spinach outbreak. J Bacteriol. 190(5), 1710-7 (2008) DOI: 10.1128/JB.01737-07
- Pérez-Rueda E., Collado-Vides J.: The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res. 28(8), 1838–1847 (2000) DOI: 10.1093/nar/28.8.1838
- Ray W.K., Larson T.J.: Application of AgaR repressor and dominant repressor variants for verification of a gene cluster involved in N-acetylgalactosamine metabolism in Escherichia coli K-12. Mol Microbiol. 51(3), 813-26 (2004) DOI: 10.1046/j.1365-2958.2003.03868.x
- Reizer J., Ramseier T.M., Reizer A., Charbit A., Saier M.H.: Novel phosphotransferase genes revealed by bacterial genome sequencing: A gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology (N Y) 142(2), 231-250 (1996) DOI: 10.1099/13500872-142-2231
- Rodionov D.A., Yang C., Li X., Rodionova I.A., Wang Y., Obraztsova A.Y., Zagnitko O.P., Overbeek R., Romine M.F., Reed S., et al.: Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genomics. 11(1), 494 (2010) DOI:10.1186/1471-2164-11-494
- Rosey E.L., Oskouian B., Stewart G.C.: Lactose metabolism by Staphylococcus aureus: Characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J Bacteriol. 173(19), 5992-8 (1991) DOI: 10.1128/jb.173.19.5992-5998.1991
- Sadler J.E., Paulson J.C., Hill R.L.: The role of sialic acid in the expression of human MN blood group antigens. Journal of Biological Chemistry 254(6), 2112-2119 (1979) DOI: 10.1016/s0021-9258(17)37773-6
- Sadovskaya I., Brisson J.R., Lam J.S., Richards J.C., Altman E.: Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1012 from Pseudomonas aeruginosa serotype O5. Eur J Biochem. 255(3), 673-84 (1998) DOI: 10.1046/j.1432-1327.1998.2550673.x
- Shen W., Jan Freark de B., Folkert K., and Fu J.: New insights in amino sugar metabolism by the gut microbiome. Gut Microbes. 17(1) 2510462 (2025) DOI:10.1080/19490976.2025.2510462
- Škerlová J., Fábry M., Hubálek M., Otwinowski Z., Řezáčová P.: Structure of the effector-binding domain of deoxyribonucleoside regulator DeoR from Bacillus subtilis. FEBS Journal. 281(18), 4280-92 (2014) DOI: 10.1111/febs.12856
- Sommaruga S., Gioia De L., Tortora P., Polissi A.: Structure prediction and functional analysis of KdsD, an enzyme involved in lipopolysaccharide biosynthesis. Biochem Biophys Res Commun. 388(2), 222-7 (2009) DOI: 10.1016/j.bbrc.2009.07.154
- Sørensen K.I., Hove-Jensen B.: Ribose catabolism of Escherichia coli: Characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression. J Bacteriol. 178(4), 1003-11 (1996) DOI: 10.1128/jb.178.4.1003-1011.1996
- Zhang H., Ravcheev D.A., Hu D., Zhang F., Gong X., Hao L., Cao M., Rodionov D.A., Wang C., Feng Y.: Two novel regulators of N-acetyl-galactosamine utilization pathway and distinct roles in bacterial infections. Microbiologyopen 4(6), 983-1000 (2015) DOI:10.1002/mbo3.307
- Zhang X., Ebright R.H.: Substitution of 2 base pairs (1 Base pair per DNA half-site) within the Escherichia coli lac promoter DNA site for catabolite gene activator protein places the lac promoter in the FNR regulon. Journal of Biological Chemistry 265(21), 12400-12403 (1990) DOI: 10.1016/s0021-9258(19)38360-7