References
- Aguirre-Quiñonero A., Cano M.E., Gamal D., Calvo J., Martínez-Martínez L.: Evaluation of the carbapenem inactivation method (CIM) for detecting carbapenemase activity in enterobacteria. Diagn Microbiol Infect Dis. 88(3), 214–218 (2017)
- Ambler R.P., Coulson A.F., Frère J.M., Ghuysen J.M., Joris B., Forsman M., Levesque R.C., Tiraby G., Waley S.G.: A standard numbering scheme for the class A beta-lactamases. Biochem J. 276, 269–270 (1991)
- Barlow M., Tenover F.C.: Phylogenetic predictions of carbapenemase activity from the Guiana extended-spectrum (GES) family of β-lactamases. JAC Antimicrob Resist, 6, dladl50 (2024).
- Bebrone C., Bogaerts P., Delbrück H., Bennink S., Kupper M.B., Rezende de Castro R., Glupczynski Y., Hoffmann K.M.: GES-18, a new carbapenem-hydrolyzing GES-Type β-lactamase from Pseudomonas aeruginosa that contains Ile80 and Ser170 residues. Antimicrob Agents Chemother. 57(1), 396–401 (2013)
- Bonnin R.A., Jousset A.B., Urvoy N., Gauthier L., Tlili L., Creton E., Cotellon G., Arthur F., Dortet L., Naas T.: Detection of GES-5 Carbapenemase in Klebsiella pneumoniae, a Newcomer in France. Antimicrob. Agents Chemother. 61, 02263–16 (2017)
- Bonnin R.A., Rotimi V.O., Al Hubail M., Gasiorowski E., Al Sweih N., Nordmann P., Poirel L.: Wide dissemination of GES-type carbapenemases in Acinetobacter baumannii isolates in Kuwait. Antimicrob. Agents Chemother. 57, 183–188 (2013)
- Bonnin R.A., Nordmann P., Potron A., Lecuyer H., Zahar J.R., Porel L.: Carbapenem-hydrolyzing GES-type extended-spectrum β-lactamase in Acinetobacter baumanii. Antimicrob Agents Chemother, 55, 349–354 (2011)
- Bonnin R.A., Jousset A.B., Emeraud C., Oueslati S., Dortet L., Naas T.: Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front Med (Lausanne) 7 (2021)
- Bonnin R.A., Jousset A.B., Emeraud C., Oueslati S., Dortet L., Naas T.: Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales., Front. Med. 7 (2021)
- Bonomo R.A., Burd E.M., Conly J., Limbago B.M., Poirel L., Segre J.A., Westblade L.F.: Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 66, 1290–1297 (2018)
- Botelho J., Grosso F., Sousa C., Peixe L.: Characterization of a new genetic environment associated with GES-6 carbapenemase from a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235. J. Antimicrob. Chemother. 70, 615–617 (2015)
- Bouchet F., Atze H., Fonvielle M., Edoo Z., Arthur M., Ethève-Quelquejeu M., Iannazzo L.: Diazabicyclooctane Functionalization for Inhibition of β-Lactamases from Enterobacteria. J Med Chem. 63, 5257–5273 (2020)
- Bush K., Jacoby G.A.: Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54, 969–976 (2010)
- Carbapenemase-producing Gram-negative organisms in England since October 2020: quarterly update, Q1 2024. Available at: https://www.gov.uk/government/publications/carbapenemase-producing-gram-negative-bacteria-laboratory-surveillance/carbapenemase-producing-gram-negative-organisms-in-england-since-october-2020-quarterly-update-q1-2024 (accessed on 25.07.2024)
- Chmielewska S., Leszczyńska K.: Carbapenemase of intestinal rods – the beginning of post-antibiotic era? Advancements of Microbiology, 58, 271–289 (2019)
- Egorov A., Rubtsova M., Grigorenko V., Uporov I., Veselovsky A.: The Role of the Ω-Loop in Regulation of the Catalytic Activity of TEM-Type β-Lactamases. Biomolecules, 9, 854 (2019)
- Electronic Medicines Compendium. 2024. “Nitrofurantoin 100 mg Capsules. Summary of Product Characteristics.” Available at: https://www.medicines.org.uk/emc/product/428/smpc#gref(accessed on 10.07.2024)
- Ellington M.J. & Holmes A. et al.: A Multispecies Cluster of GES-5 Carbapenemase-Producing Enterobacterales Linked by a Geographically Disseminated Plasmid. Clin. Infect. Dis. 71, 2553-2560 (2020)
- Escandón K., Reyes S., Gutiérrez S., Villegas M.: The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Review of Anti-infective Therapy. 15, 277–297 2017)
- European Medicine Agency. 2018. “Vabomere (meropenem/vaborbactam). An overview of Vabomere and why it is authorized in the E.U.” Available at: https://www.ema.europa.eu/en/documents/overview/vabomere-epar-medicine-overview_en.pdf(accessed on 10.07.2024)
- European Medicine Agency. 2022. “Recarbrio (imipenem/cilastatin/relebactam). An overview of Recarbrio and why it is authorized in the E.U.” Available at: https://www.ema.europa. eu/en/documents/overview/recarbrio-epar-medicine-overview_ en.pdf (accessed on 10.07.2024)
- European Medicine Agency. 2024b. “Xerava (eravacycline). An overview of Xerava and why it is authorized in the E.U.” Available at: https://www.ema.europa.eu/en/documents/overview/xerava-epar-medicine-overview_en.pdf (accessed on 10.07.2024)
- European Medicine Agency. 2024c. “Zavicefta (ceftazidime/avibactam). An overview of Zavicefta and why it is authorized in the E.U.” Available at: https://www.ema.europa.eu/en/documents/overview/zavicefta-epar-medicine-overview_en.pdf (accessed on 10.07.2024)
- European Medicines Agency. 2020a. “ Fetcroja (cefiderocol). An overview of Fetcroja and why it is authorized in the E.U.” Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/fetcroja (accessed on 10.07.2024)
- European Medicines Agency. 2020b. “Xenleta (lefamulin). An overview of Xenleta and why it is authorized in the E.U.” Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/xenleta (accessed on 10.07.2024)
- European Medicines Agency. 2024a. “Exblifep (cefepime/enmetazobactam). An overview of Exblifep and why it is authorised in the E.U.” Available at: https://www.ema.europa.eu/en/documents/overview/exblifep-epar-medicine-overview_en.pdf (accessed on 10.07.2024)
- Frase H., Smith C.A., Toth M., Champion M.M., Mobashery S., Vakulenko S.B.: Identification of products of inhibition of GES-2 beta-lactamase by tazobactam by x-ray crystallography and spectrometry. J. Biol. Chem. 286, 14396–409 (2011)
- Garza-Ramos U., Barrios H., Reyna-Flores F., Tamayo-Legorreta E., Catalan-Najera J.C., Morfin-Otero R., Rodríguez-Noriega E., Volkow P., Cornejo-Juarez P., González A., Gaytan-Martinez J., Del Rocío Gónzalez-Martínez M., Vazquez-Farias M., Silva-Sanchez J.: Widespread of ESBL- and carbapenemase GES-type genes on carbapenem-resistant Pseudomonas aeruginosa clinical isolates: a multicenter study in Mexican hospitals. Diagn Microbiol Infect Dis. 81(2), 135–137 (2015)
- Grossman T.H., O’Brien W., Kerstein K.O., Sutcliffe J.A.: Eravacycline (TP-434) is active in vitro against biofilms formed by uropathogenic Escherichia coli. Antimicrob Agents Chemother. 59, 2446–2449 (2015)
- Hawkey P.M., Warren R.E., Livermore D.M., McNulty C.A.M., Enoch D.A., Otter J.A., Wilson A.P.R.: Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J. Antimicrob. Chemother. 73, iii2–iii78 (2018)
- Hayden D.A., White B.P., Bennett K.K.: Review of Ceftazidime-Avibactam, Meropenem-Vaborbactam, and Imipenem/Cilastatin-Relebactam to Target Klebsiella pneumoniae Carbapenemase-Producing Enterobacterales. J Pharm Technol. 36, 202–210 (2020)
- Herrera-Espejo S., Del Barrio-Tofiño E., Cebrero-Cangueiro T., López-Causapé C., Álvarez-Marín R., Cisneros J.M., Pachón J., Oliver A., Pachón-Ibáñez M.E.: Carbapenem Combinations for Infections Caused by Carbapenemase-Producing Pseudomonas aeruginosa: Experimental In Vitro and In Vivo Analysis. Antibiotics (Basel), 11, 1212 (2022)
- Hryniewicz W.: 2023. “Leki przeciwbakteryjne”. Avaliable at: https://www.mp.pl/interna/chapter/B16.II.18.11.1. (accessed on 10.07.2024)
- Juan C. Vázquez-Ucha, Jorge Arca-Suárez, Germán Bou, Alejandro Beceiro: New Carbapenemase Inhibitors: Clearing the Way for the β-lactams. Int J Mol Sci. 21, 9308 (2020)
- Kotsakis S.D., Miriagou V., Tzelepi E., Tzouvelekis L.S.: Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob. Agents Chemother. 54, 4864–71 (2010)
- Labuschagne Cde J., Weldhagen G.F., Ehlers M.M., Dove M.G.: Emergence of class 1 integron-associated GES-5 and GES-5-like extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa in South Africa. Int J Antimicrob Agents. 31(6), 527–530 (2008)
- Levitt P.S., Papp-Wallace K.M., Taracila M.A., Hujer A.M., Winkler M.L., Smith K.M., Xu Y., Harris M.E., Bonomo R.A.: Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis. J. Biol. Chem. 287, 31783–31793 (2012)
- Mabrouk A., Grosso F., Botelho J., Achour W., Ben Hassen A., Peixe L.: GES-14-Producing Acinetobacter baumannii Isolates in a Neonatal Intensive Care Unit in Tunisia Are Associated with a Typical Middle East Clone and a Transferable Plasmid. Antimicrob Agents Chemother. 61(6), e00142–17 (2017)
- Mammeri H., Van De Loo M., Poirel L., Martinez-Martinez L., Nordmann P.: Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob. Agents Chemother. 49, 71–76 (2005)
- Mendez-Sotelo B.J., López-Jácome L.E., Colín-Castro C.A., Hernández-Durán M., Martínez-Zavaleta M.G., Rivera-Buendía F., Velázquez-Acosta C., Rodríguez-Zulueta A.P., Morfín-Otero M.D.R., Franco-Cendejas R.: Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico. Antibiotics (Basel). 12(1), 96 (2023)
- Moubareck C., Brémont S., Conroy M.C., Courvalin P., Lambert T.: GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob. Agents Chemother. 53, 3579–3581 (2009)
- Muntean M.M., Muntean A.A., Gauthier L., Creton E., Cotellon G., Popa M.I., Bonnin R.A., Naas T.: Evaluation of the rapid carbapenem inactivation method (rCIM): a phenotypic screening test for carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 73(4), 900–908 (2018)
- Ortiz-Cartagena C., Pablo-Marcos D., Fernández-García L., Blasco L., Pacios O., Bleriot I. et al.: CRISPR-Cas13a-Based Assay for Accurate Detection of OXA-48 and GES Carbapenemases. Microbiol Spectr. 11, e01329–23 (2023)
- Pablo-Marcos D., Siller M., Agüero J., Álvarez-Justel A., García-Fernández S., Velasco de la Fuente S., Goicoechea P., Rodríguez-Lozano J., Ocampo-Sosa A., Lucas-Fernández J., Fariñas M.C., Fernández J., Fraile-Ribot P.A., Aracil B., Oteo-Iglesias J., Calvo-Montes J.: Are GES carbapenemases underdiagnosed? An allelic discrimination assay for their accurate detection and differentiation, J. Microbiol. Methods, 207, (2023)
- Pasteran F., Gonzalez L.J., Albornoz E., Bahr G., Vila A.J., Corso A.: Triton Hodge Test: Improved Protocol for Modified Hodge Test for Enhanced Detection of NDM and Other Car-bapenemase Producers. J Clin Microbiol. 54(3), 640–649 (2016)
- Paterson D.L., Bonomo R.A.: Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev. 18, 657–686 (2005)
- Wernicki P.: Trojański antybiotyk; działa skutecznie, bo podstępnie; rynekaptek.pl; 2018. Available online: https://www. rynekaptek.pl/farmakologia/trojanski-antybiotyk-dziala-skutecznie-bo-podstepnie,28760.html (accessed on 10.07.2024)
- Poirel L., Le Thomas I., Naas T., Karim A., Nordmann P.: Biochemical Sequence Analyses of GES-1, a Novel Class A Extended-Spectrum β-Lactamase, and the Class 1 Integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother, 44, (2000)
- Poirel L., Nordmann P.: Rapid tests for detection of carbapenemase producers in P. aeruginosa; what do we really need? Enferm. Infecc. Microbiol. Clin. 32, 623–624 (2014)
- Poirel L., Ortiz De La Rosa J.M., Kieffer N., Dubois V., Jayol A., Nordmann P.: Acquisition of Extended-Spectrum β-Lactamase GES-6 Leading to Resistance to Ceftolozane-Tazobactam Combination in Pseudomonas aeruginosa. Antimicrob. Agents Chem-other. 63, e01809–18 (2018)
- Poirel L., Weldhagen G.F., Naas T., De Champs C., Dove M.G., Nordmann P.: GES-2, a class A beta-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother, 45, 2598–2603 (2001)
- Queenan A.M., Bush K.: Carbapenemases: the versatile betalactamases. Clin. Microbiol. Rev. 20, 440–458 (2007)
- Ramana K.V., Rao R., Sharada Ch.V., Kareem M., Reddy L.R., Ratna Mani M.: Modified Hodge test: A useful and the low-cost phenotypic method for detection of carbapenemase producers in Enterobacteriaceae members. J Nat Sci Biol Med. 4(2), 346–8 (2013)
- Recio R., Villa J., González-Bodí S., Brañas P., Orellana M.Á., Mancheño-Losa M., Lora-Tamayo J., Chaves F., Viedma E.: Genomic Analysis of Ceftazidime/Avibactam-Resistant GES-Producing Sequence Type 235 Pseudomonas aeruginosa Isolates. Antibiotics (Basel). 11, 871 (2022)
- Rejestr produktów leczniczych. 2012. “Charakterystyka produktu leczniczego Monural.” Available at: https://rejestrymedyczne.ezdrowie.gov.pl/api/rpl/medicinal-products/4453/characteristic(accessed on 10.07.2024)
- Rejestr produktów leczniczych. 2014. “Charakterystyka produktu leczniczego Colistin TZF.” Available at: https://rejestry.ezdrowie. gov.pl/api/rpl/medicinal-products/1541/characteristic(accessed on 10.07.2024)
- Rejestr produktów leczniczych. 2015a. “Charakterystyka produktu leczniczego Tobramycin B. Braun.” Available at: https://rejestrymedyczne.ezdrowie.gov.pl/api/rpl/medicinal-products/23763/characteristic(accessed on 10.07.2024)
- Rejestr produktów leczniczych. 2015b. “Charakterystyka produktu leczniczego Amikacin B. Braun.” Available at: https://rejestrymedyczne.ezdrowie.gov.pl/api/rpl/medicinal-products/25694/characteristic(accessed on 10.07.2024)
- Rezzoug I., Emeraud C., Sauvadet A., Cotellon G., Naas T., Dortet L.: Evaluation of a colorimetric test for the rapid detection of carbapenemase activity in Gram negative bacilli: the MAST® PAcE test. Antimicrob Agents Chemother. 95(5), e02351-20 (2023)
- Smith C.A., Frase H., Toth M., Kumarasiri M., Wiafe K., Munoz J., Mobashery S., Vakulenko S.B.: Structural basis for progression toward the carbapenemase activity in the GES family of betalactamases. J AM CHEM SOC. 134(47), 19512–19515 (2012)
- Smith C.A., Caccamo M., Kantardjieff K.A., Vakulenko S.: Structure of GES-1 at atomic resolution: insights into the evolution of carbapenamase activity in the class A extended-spectrum betalactamases. Acta Crystallogr D Biol Crystallogr. 9, 982–92 (2007)
- Soszyńska-Morys D, Wawer A.: Nowe antybiotyki w badaniach klinicznych – perspektywy rozwoju leczenia przeciwbakteryjnego. Med Og Nauk Zdr. 29, 73–78 (2023)
- Streling A.P., Barbosa P.P., Marcondes M.F., Nicoletti A.G., Picão R.C., Pinto E.C., Marques E.A., Oliveira V., Gales A.C.: Genetic and biochemical characterization of GES-16, a new GES-type β-lactamase with carbapenemase activity in Serratia marcescens. Diagn. Microbiol. Infect. Dis. 92, 147–151 (2018)
- Tanabe M., Sugawara Y., Denda T., Sakaguchi K., Takizawa S.: Municipal wastewater monitoring revealed the predominance of blaGES genes with diverse variants among carbapenemase-producing organisms: high occurrence and persistence of Aero-monas caviae harboring the new blaGES variant blaGES-48. Microbiol Spectr. 6 (2023)
- Tenover FC.: Using Molecular Diagnostics to Develop Therapeutic Strategies for Carbapenem-Resistant Gram-Negative Infections. Front Cell Infect Microbiol. 11, 1–6 (2021)
- Vanstone GL, Wey E, Mack D, Smith ER, Balakrishnan I.: Evaluation of the EntericBio CPE assay for the detection of carba-penemase-producing organisms. J Med Microbiol. 67, 1728–1730 (2018)
- Viedma E., Juan C., Acosta J., Zamorano L., Otero J.R., Sanz F., Chaves F., Oliver A.: Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum beta-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother. 53(11), 4930–3 (2009)
- Vourli S., Giakkoupi P., Miriagou V., Tzelepi E., Vatopoulos A.C., Tzouvelekis L.S.: Novel GES/IBC extended-spectrum β-lactamase variants with carbapenemase activity in clinical enterobacteria, FEMS Microbiol. Lett. 234, 209–213 (2006)
- Wachino J., Doi Y., Yamane K., Shibata N., Yagi T., Kubota T., Arakawa Y. Molecular Characterization of a Cephamycin-Hydrolyzing and Inhibitor-Resistant Class A β-Lactamase, GES-4, Possessing a Single G170S Substitution in the Ω-Loop. Antimicrob Agents Chemother, 48, (2004)
- World Health Organization. 2024. "WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance.” WHO. Available online: https://www.who.int/publications/i/item/9789240093461(accessed on 10.07.2024)
- Zhanel G.G., Cheung D., Adam H., Zelenitsky S., Golden A., Schweizer F., Gorityala B., Lagacé-Wiens P.R., Walkty A., Gin A.S., Hoba D.J., Karlowsky J.A.: Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs, 76(5), 567–88 (2016)