References
- Amgarten D., Braga L.P.P., da Silva A.M., Setubal J.C.: MARVEL, a Tool for prediction of bacteriophage sequences in meta-genomic bins. Front. Genet. 9, 304 (2018)
- Amsel R., Totten P.A., Spiegel C.A., Chen K.C., Eschenbach D., Holmes K.K.: Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am. J. Med. 74, 14–22 (1983)
- Ankerst M., Breunig M.M., Kriegel H.P., Sander J.: OPTICS: ordering points to identify the clustering structure. ACM SIG-MOD, 1, 49–60 (1999)
- Asgari E., Garakani K., McHardy A.C., Mofrad M.R.K.: Micro-Pheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics, 34, 32–42 (2018)
- Atlas R.M., Bartha R.: Microbial ecology: fundamentals and applications. Acta Ecol. Sin. 70, 977 (1981)
- Arrieta A.B. & Díaz-Rodríguez N. et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58, 82–115 (2020)
- Beck D., Foster J.A.: Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics. PLoS One, 9, e87830 (2014)
- Beck L.C., Granger C.L., Masi A.C., Stewart C.J.: Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev. Proteomics, 18, 247–259 (2021)
- Belkin M., Niyogi P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)
- Bourne D.G., Garren M., Work T.M., Rosenberg E., Smith G.W., Harvell C.D.: Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009)
- Bulgarelli D., Schlaeppi K., Spaepen S., Van Themaat E.V.L., Schulze-Lefert P.: Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013)
- Chang H.X., Haudenshield J.S., Bowen C.R., Hartman G.L.: Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front. Microbiol. 8, 519 (2017)
- Chen X., Huang Y.A., You Z.H., Yan G.Y., Wang X.S.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 33, 733–739 (2017)
- Chen X., Yan C.C., Luo C., Ji W., Zhang Y., Dai Q.: Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Sci. Rep. 5, 11338 (2015)
- Cheng Y.Z.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17, 790–799 (1995)
- Cortes C., Vapnik V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
- Defays D.: Efficient algorithm for a complete link method. Comput. J. 20, 364–366 (1977)
- Deng Z.L., Gottschick C., Bhuju S., Masur C., Abels C., Wagner-Dobler I.: Metatranscriptome analysis of the vaginal microbiota reveals potential mechanisms for protection against metronidazole in bacterial vaginosis. MSphere, 3, e00262–18 (2018)
- Devlin J., Chang M.W., Lee K., Toutanova K.: Bert: pre-training of deep bidirectional transformers for language understanding. Hum. Lang. Technol. 7, 4171–4186 (2019)
- DiMucci D., Kon M., Segre D.: Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks. Msystems, 3, e00181–18 (2018)
- Erev I., Roth A.E.: Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88, 848–881 (1998)
- Fan C.Y., Lei X. J., Guo L., Zhang A.D.: Predicting the associations between microbes and diseases by integrating multiple data sources and path based Het eSim scores. Neurocomputing, 323, 76–85 (2019)
- Fisher R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics, 7, 179–188 (1936)
- Frank M.J., Seeberger L.C., O’reilly R.C.: By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306, 1940–1943 (2004)
- Freund Y.: Boosting a weak learning algorithm by majority. 3rd Annual workshop on computational learning theory, 1, 202–216 (1990)
- Gillevet P., Sikaroodi M., Keshavarzian A., Mutlu E.A.: Quantitative assessment of the human gut microbiome using multitag pyrosequencing. Chem. Biodivers. 7, 1065–1075 (2010)
- Greener J.G., Kandathil S.M., Moffat L., Jones D.T.: A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022)
- He X.F., Niyogi P.: Locality preserving projections. 17th Annual conference on neural information processing systems, 1, 153–160 (2003)
- Hinton G.E., Salakhutdinov R.R.: Reducing the dimensionality of data with neural networks. Science, 313, 504–507 (2006)
- Huang Y.A., You Z.H., Chen X., Huang Z.A., Zhang S.W., Yan G.Y.: Prediction of microbe-disease association from the integration of neighbor and graph with collaborative recommendation model. J. Transl. Med. 15, 209 (2017)
- Huang Z.A., Chen X., Zhu Z.X., Liu H.S., Yan G.Y., You Z.H., Wen Z.: PBHMDA: path-based human microbe-disease association prediction. Front. Microbiol. 8, 233 (2017)
- Johnson H.R., Trinidad D.D., Guzman S., Khan Z., Parziale J.V., DeBruyn J.M., Lents N.H.: A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS One, 11, e0167370 (2016)
- Jones M.L., Ganopolsky J.G., Martoni C.J., Labbe A., Prakash S.: Emerging science of the human microbiome. Gut Microbes, 5, 446–457 (2014)
- Jordan M.I., Mitchell T.M.: Machine learning: trends, perspectives, and prospects. Science, 349, 255–260 (2015)
- Kaelbling L.P., Littman M.L., Moore A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)
- Katz L.: A new status index derived from sociometric analysis. Psychometrika, 18, 39–43 (1953)
- Keerthi S.S., Ravindran B.: A tutorial survey of reinforcement learning. Sadhana Acad. Proc. Eng. Sci. 19, 851–889 (1994)
- Kira K., Rendell L.A.: A practical approach to feature selection. 19th International workshop on machine learning, 1, 249–256 (1992)
- Kober J., Bagnell J.A., Peters J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32, 1238–1274 (2013)
- Langille M.G.I. & Zaneveld J. et al.: Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013)
- Lecun Y., Bengio Y., Hinton G.: Deep learning. Nature, 521, 436–444 (2015)
- Lecun Y., Boser B., Denker J.S., Henderson D., Howard R.E., Hubbard W., Jackel L.L.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)
- Lecun Y., Bottou L., Bengio Y., Haffner P.: Gradient-based learning applied to document recognition. Proc. IEEE, 86, 2278–2324 (1998)
- Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I.: Microbial ecology: human gut microbes associated with obesity. Nature, 444, 1022–1023 (2006)
- Ley R.E., Turnbaugh P.J., Samuel K., Gordon J.I.: Microbial ecology: human gut microbes associated with obesity. Nature, 444, 1022–1023 (2006)
- Liang J., Luo W., Yu K., Xu Y., Chen J., Deng C., Ge R., Su H., Huang W., Wang G.: Multi-Omics revealing the response patterns of symbiotic microorganisms and host metabolism in Scleractinian coral Pavonaminuta to temperature stresses. Meta, 12, 18 (2021)
- Liu B., Liu F., Wang X., Chen J., Fang L., Chou K.C.: Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 43, 65–71 (2015)
- Mainali K.P. & Bewick S. et al.: Statistical analysis of co-occurrence patterns in microbial presenceabsence datasets. PLoS One, 12, e0187132 (2017)
- Malla M.A., Dubey A., Kumar A., Yadav S., Hashem A., Abdallah E.F.: Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front. Immunol. 9, 2868 (2018)
- Mnih V. & Kavukcuoglu K. et al.: Human-level control through deep reinforcement learning. Nature, 518, 529–533 (2015)
- Moran, M.A.: The global ocean microbiome. Science, 350, 8455 (2015)
- Morris O.N., Cunningham J.C., Finneycrawley J.R., Jaques R.P., Kinoshita G.: Microbial insecticides in Canada: their registration and use in agriculture, forestry and public and animal health. Bull. Entomol. Soc. Canada, 18, 1–43 (1986)
- Murali A., Bhargava A., Wright E.S.: IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome, 6, 140 (2018)
- Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G.: Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655–670 (2010)
- Nowrousian M.: Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot. Cell, 9, 1300–1310 (2010)
- Nugent R.P., Krohn M.A., Hillier S.L.: Reliability of diagnosing bacterial vaginosis is improved by a standardised method of gram stain interpretation. J. Clin. Microbiol. 29, 297–301 (1991)
- Oudah M., Henschel A.: Taxonomy-aware feature engineering for microbiome classification. BMC Bioinformatics, 19, 227 (2018)
- Pearson K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901)
- Peng L.H., Yin J., Zhou L.Q., Liu M.X., Zhao Y.: Human microbe disease association prediction based on adaptive boosting. Front. Microbiol. 9, 2440 (2018)
- Petrof E.O., Claud E.C., Gloor G.B., Allenvercoe E.: Microbial ecosystems therapeutics: a new paradigm in medicine? Benef. Microbes, 4, 53–65 (2012)
- Quinlan J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
- Quinlan J.R.: Bagging, boosting, and C4.5. 13th National Conference on Artificial Intelligence, 1, 725–730 (1996)
- Ravel J. & Gajer P. et al.: Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. 108, 4680–4687 (2011)
- Reiff C., Kelly D.: Inflammatory bowel disease, gut bacteria and probiotic therapy. Int. J. Med. Microbiol. 300, 25–33 (2010)
- Roweis S.T., Saul L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323 (2000)
- Ruff W.E., Greiling T.M., Kriegel M.A.: Host-microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020)
- Rumelhart D.E., Hinton G.E., Williams R.J.: Learning representations by back-propagating errors. Nature, 323, 533–536 (1986)
- Shi J.Y., Huang H., Zhang Y.N., Cao J.B., Yiu S.M.: BMCMDA: a novel model for predicting human microbe-disease associations via binary matrix completion. BMC Bioinformatics, 19, 169–176 (2018)
- Shi J.Y., Li J.X., Lu H.M.: Predicting existing targets for new drugs base on strategies for missing interactions. BMC Bioinformatics, 17, 282 (2016)
- Sibley C.D., Parkins M.D., Rabin H.R., Kangmin D., Norgaard J.C., Surette M.G.: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl. Acad. Sci. 105, 15070–15075 (2008)
- Sibson R.: Slink-optimally efficient algorithm for single-link cluster method. Comput. J. 16, 30–34 (1973)
- Smirnov E.A., Timoshenko D.M., Andrianov S.N.: Comparison of regularization methods for ImageNet classification with deep convolutional neural networks. 2nd AASRI CIB, 1, 89–94 (2013)
- Souza P.M.D.: Application of microbial a-amylase in industry – A review. Braz. J. Microbiol. 41, 850–861 (2010)
- Srinivasan S. & Hoffman N.G. et al.: Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One, 7, e37818 (2012)
- Statnikov A., Henaff M., Narendra V., Konganti K., Li Z.G., Yang L.Y., Pei Z, Blaser MJ, Aliferis CF, Alekseyenko AV.: A comprehensive evaluation of multicategory classification methods for microbiomic data. Microbiome, 1, 11 (2013)
- Su R., Wu H., Xu B., Liu X., Wei L.: Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 1231–1239 (2018)
- Sujatha S. & Hoffman N.G. et al.: Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One, 7, e37818 (2012)
- Tenenbaum J.B., De Silva V., Langford J.C.: A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319 (2000)
- Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I.: The human microbiome project. Nature, 449, 804–810 (2007)
- Van Der Maaten L., Hinton G.: Visualising Data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
- Wang F., Huang Z.A., Chen X., Zhu Z.X., Wen Z.K., Zhao J.Y., Yan G.Y.: LRLSHMDA: laplacian regularised least squares for human microbe disease association prediction. Sci. Rep. 7, 7601 (2017)
- Wei L.Y., Wan S.X., Guo J.S., Wong K.K.L.: A novel hierarchical selective ensemble classifier with bioinformatics application. Artif. Intell. Med. 83, 82–90 (2017)
- Wei L.Y., Xing P.W., Zeng J.C., Chen J.X., Su R., Guo F.: Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier. Artif. Intell. Med. 83, 67–74 (2017)
- Weinbauer M.G.: Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2010)
- White J.R., Nagarajan N., Pop M.: Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5, e1000352 (2009)
- Wisittipanit N.: Machine learning approach for profiling human microbiome. Ph.D. dissertation, George Mason University, Fairfax (2019)
- Yang X., Gao L., Guo X., Shi X., Wu H., Song F., Wang B.: A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS One, 9, e87797 (2014)
- Yang H., Qiu W.R., Liu G.Q., Guo F.B., Chen W., Chou K.C., Lin H.: iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci. 14, 883–891 (2018)
- Yeh C.H.: Classification and regression trees (Cart). Chemom. Intell. Lab. Syst. 12, 95–96 (1991)
- Yu L., Huang J.B., Ma Z.X., Zhang J., Zou Y.P., Gao L.: Inferring drug-disease associations based on known protein complexes. BMC Med. Genomics, 8, 2 (2015)
- Yu L., Zhao J., Gao L.: Predicting potential drugs for breast cancer based on miRNA and tissue specificity. Int. J. Biol. Sci. 14, 971–980 (2018)
- Yu L., Ma X.K., Zhang L., Zhang J., Gao L.: Prediction of new drug indications based on clinical data and network modularity. Sci. Rep. 6, 32530 (2016)
- Zhang J., Liu Y.X., Guo X., Qin Y., Garrido-Oter R., Schulze-Lefert P., Bai Y.: High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 16, 988–1012 (2021)
- Zhang M.L., Pena J.M., Robles V.: Feature selection for multi-label naive Bayes classification. Inf. Sci. 179, 3218–3229 (2009)
- Zou Q., Lin G., Jiang X., Liu X., Zeng X.: Sequence clustering in bioinformatics: an empirical study. Brief. Bioinform. 21, 1–10 (2020)