Have a personal or library account? Click to login
Bdellovibrio bacteriovorus: More than Just a Bacterial Hunter Cover

Bdellovibrio bacteriovorus: More than Just a Bacterial Hunter

Open Access
|Nov 2022

References

  1. Abram D., Castro e Melo J., Chou D.: Penetration of <em>Bdellovibrio bacteriovorus</em> into host cells. <em>J. Bacteriol.</em> <bold>118(2)</bold>, 663–680 (1974)
  2. Baker M., Negus D., Raghunathan D., Radford P., Moore C., Clark G., Diggle M., Tyson J., Twycross J., Sockett R.E.: Measuring and modelling the response of <em>Klebsiella pneumoniae</em> KPC prey to <em>Bdellovibrio bacteriovorus</em> predation, in human serum and defined buffer. <em>Sci. Rep.</em> <bold>7</bold>, 1–18 (2017)
  3. Brandt J-M., Mahmoud K., Koval S., MacDonald S., Medley J.: Antimicrobial agents and low-molecular weight polypeptides affect polyethylene wear in knee simulator testing. <em>Tribol. Int.</em> <bold>65</bold>, 97–104 (2013)
  4. Bratanis E., Molina H., Naegeli A., Collin M., Lood R.: BspK, a serine protease from the predatory bacterium <em>Bdellovibrio bacteriovorus</em> with utility for analysis of therapeutic antibodies. <em>Appl. Environ. Microbiol.</em> <bold>83</bold>, e03037–16 (2017)
  5. Bukowska-Faniband E., Andersson T., Lood R.: Studies on Bd0934 and Bd3507, two secreted nucleases from <em>Bdellovibrio bacteriovorus</em>, reveal sequential release of nucleases during the predatory cycle. <em>J. Bacteriol.</em> <bold>202</bold>, e00150–20 (2020)
  6. Burnham J.C., Hashimoto T., Conti S.F.: Electron microscopic observations on the penetration of <em>Bdellovibrio bacteriovorus</em> into gram-negative bacterial hosts. <em>J. Bacteriol.</em> <bold>96(4)</bold>, 1366–1381 (1968)
  7. Cao H., An J., Zheng W., He S.: <em>Vibrio cholerae</em> pathogen from the freshwater-cultured whiteleg shrimp <em>Penaeus vannamei</em> and control with <em>Bdellovibrio bacteriovorus</em>. <em>J. Invertebr. Pathol.</em> <bold>130</bold>, 13–20 (2015)
  8. Cao H., Wang H., Yu J., An J., Chen J.: Encapsulated <em>bdellovibrio</em> powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic vibrios. <em>Microorganisms</em>, <bold>7(8)</bold>, 244 (2019)
  9. Carbonnelle E., H elaine S., Prouvensier L., Nassif X, Pelicic V.: Type IV pilus biogenesis in <em>Neisseria meningitidis</em>: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. <em>Mol. Microbiol.</em> <bold>55(1)</bold>, 54–64 (2005)
  10. Chanyi R.M., Koval S.F.: Role of type IV Pili in predation by <em>Bdellovibrio bacteriovorus</em>. <em>PLoS One</em>, <bold>9(11)</bold>, e113404 (2014)
  11. Chen X., Yi H., Liu S., Zhang Y., Su Y., Liu X., Bi S., Lai H., Zeng Z., Li G.: Promotion of pellet-feed feeding in mandarin fish (<em>Siniperca chuatsi</em>) by <em>Bdellovibrio bacteriovorus</em> is influenced by immune and intestinal flora. <em>Aquaculture</em>, <bold>542</bold>, 736864 (2021)
  12. Dashiff A., Junka R., Libera M., Kadouri D.: Predation of human pathogens by the predatory bacteria <em>Micavibrio aeruginosavorus</em> and <em>Bdellovibrio bacteriovorus</em>. <em>J. Appl. Microbiol.</em> <bold>110</bold>, 431–444 (2011)
  13. Dashiff A., Keeling T.G., Kadouri D.E.: Inhibition of predation by <em>Bdellovibrio bacteriovorus</em> and <em>Micavibrio aeruginosavorus</em> via host cell metabolic activity in the presence of carbohydrates. <em>Appl. Environ. Microbiol.</em> <bold>77(7)</bold>, 2224–2231 (2011)
  14. Deeg C.M., Le T.T., Zimmer M.M., Suttle C.A.: From the inside out: An epibiotic <em>Bdellovibrio</em> predator with an expanded genomic complement. <em>J. Bacteriol.</em> <bold>202</bold>, e00565–19 (2020)
  15. Dharani S., Kim D.H., Shanks R.M., Doi Y., Kadouri D.E.: Susceptibility of colistin-resistant pathogens to predatory bacteria. <em>Res. Microbiol.</em> <bold>169</bold>, 52–55 (2018)
  16. Dori-Bachash M., Dassa B., Pietrokovski S., Jurkevitch E.: Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium <em>Bdellovibrio bacteriovorus</em>. <em>Appl. Environ. Microbiol.</em> <bold>74(23)</bold>, 7152–7162 (2008)
  17. Duncan M.C., Forbes J.C., Nguyen Y., Shull L.M., Gillette R.K., Lazinski D.W., Ali A., Shanks R.M., Kadouri D.E., Camilli A.: <em>Vibrio cholerae</em> motility exerts drag force to impede attack by the bacterial predator <em>Bdellovibrio bacteriovorus</em>. <em>Nat. Commun.</em> <bold>9</bold>, 1–9 (2018)
  18. Duran N., Justo G.Z., Ferreira C.V., Melo P.S., Cordi L., Martins D.: Violacein: properties and biological activities. <em>Biotechnol. Appl. Biochem.</em> <bold>48(Pt 3)</bold>, 127–133 (2007)
  19. Dwidar M., Leung B.M., Yaguchi T., Takayama S., Mitchell R.J.: Patterning bacterial communities on epithelial cells. <em>PLoS One</em>, <bold>8</bold>, e67165 (2013)
  20. Dwidar M., Monnappa A.K., Mitchell R.J.: The dual probiotic and antibiotic nature of <em>Bdellovibrio bacteriovorus</em>. <em>BMB Rep.</em> <bold>45(2)</bold>, 71–78 (2012)
  21. Dwidar M., Nam D., Mitchell R.J.: Indole negatively impacts predation by <em>Bdellovibrio bacteriovorus</em> and its release from the bdelloplast. <em>Environ. Microbiol.</em> <bold>17</bold>, 1009–1022 (2015)
  22. Evans K.J., Lambert C., Sockett R.E.: Predation by <em>Bdellovibrio bacteriovorus</em> HD100 requires type IV Pili. <em>J. Bacteriol.</em> <bold>189(13)</bold>, 4850–4859 (2007)
  23. Fenton A.K., Kanna M., Woods R.D., Aizawa S-I., Sockett R.E.: Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory <em>bdellovibrio</em> inside prey and exit through discrete bdelloplast pores. <em>J. Bacteriol.</em> <bold>192(24)</bold>, 6329–6335 (2010)
  24. Findlay J.S., Flick-Smith H.C., Keyser E., Cooper I.A., Williamson E.D., Oyston P.C.: Predatory bacteria can protect SKH-1 mice from a lethal plague challenge. <em>Sci. Rep.</em> <bold>9</bold>, 1–10 (2019)
  25. Gupta S., Tang C., Tran M., Kadouri D.E.: Effect of predatory bacteria on human cell lines. <em>PLoS One,</em> <bold>11</bold>, e0161242 (2016)
  26. Harding C.J., Huwiler S.G., Somers H., Lambert C., Ray L.J., Till R., Taylor G., Moynihan P.J., Sockett R.E., Lovering A.L.: A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator <em>Bdellovibrio bacteriovorus</em>. <em>Nat. Commun.</em> <bold>11</bold>, 1–12 (2020)
  27. Hobley L., Fung R.K., Lambert C., Harris M.A., Dabhi J.M., King S.S., Basford S.M., Uchida K., Till R., Ahmad R.: Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in <em>Bdellovibrio bacteriovorus</em>. <em>PLoS. Pathog.</em> <bold>8</bold>, e1002493 (2012)
  28. Hobley L., Summers J.K., Till R., Milner D.S., Atterbury R.J., Stroud A., Capeness M.J., Gray S., Leidenroth A., Lambert C.: Dual predation by bacteriophage and <em>Bdellovibrio bacteriovorus</em> can eradicate <em>Escherichia coli</em> prey in situations where single predation cannot. <em>J. Bacteriol.</em> <bold>202</bold>, e00629–19 (2020)
  29. Iebba V., Santangelo F., Totino V., Nicoletti M., Gagliardi A., De Biase R.V., Cucchiara S., Nencioni L., Conte M.P., Schippa S.: Higher prevalence and abundance of <em>Bdellovibrio bacteriovorus</em> in the human gut of healthy subjects. <em>PloS One</em>, <bold>8</bold>, e61608 (2013)
  30. Im H., Choi S.Y., Son S., Mitchell R.J.: Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. <em>Sci. Rep.</em> <bold>7</bold>, 1–10 (2017)
  31. Im H., Son S., Mitchell R.J., Ghim C-M.: Serum albumin and osmolality inhibit <em>Bdellovibrio bacteriovorus</em> predation in human serum. <em>Sci. Rep.</em> <bold>7</bold>, 1–9 (2017)
  32. Johnke J., Fraune S., Bosch T.C., Hentschel U., Schulenburg H.: <em>Bdellovibrio</em> and like organisms are predictors of microbiome diversity in distinct host groups. <em>Microb. Ecol.</em> <bold>79</bold>, 252–257 (2020)
  33. Kadouri D.E., To K., Shanks R.M., Doi Y.: Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. <em>PloS One</em>, <bold>8</bold>, e63397 (2013)
  34. Kuru E., Lambert C., Rittichier J., Till R., Ducret A., Derouaux A., Gray J., Biboy J., Vollmer W., VanNieuwenhze M, et al.: Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for <em>Bdellovibrio bacteriovorus</em> predation. <em>Nat. Microbiol.</em> <bold>2(12)</bold>, 1648–1657 (2017)
  35. Lambert C., Evans K.J., Till R., Hobley L., Capeness M., Rendulic S., Schuster S.C., Aizawa S-I., Sockett R.E.: Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by <em>Bdellovibrio bacteriovorus</em>. <em>Mol. Microbiol.</em> <bold>60(2)</bold>, 274–286 (2006)
  36. Lambert C., Ivanov P., Sockett RE.: A transcriptional “Scream” early response of <em>E. coli</em> prey to predatory invasion by <em>Bdellovibrio</em>. <em>Curr. Microbiol.</em> <bold>60</bold>, 419–427 (2010)
  37. Lambert C., Lerner T.R., Bui N.K., Somers H., Aizawa S-I., Liddell S., Clark A., Vollmer W., Lovering A.L., Sockett R.E, et al.: Interrupting peptidoglycan deacetylation during <em>Bdellovibrio</em> predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. <em>Sci. Rep.</em> <bold>6</bold>, 26010 (2016)
  38. Lerner T.R., Lovering A.L., Bui N.K., Uchida K., Aizawa S-I., Vollmer W., Sockett R.E.: Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory <em>bdellovibrio</em> and increase population fitness. <em>PLoS Pathog.</em> <bold>8(2)</bold>, e1002524 (2012)
  39. Lima I.F., Havt A., Lima A.A.: Update on molecular epidemiology of <em>Shigella</em> infection. <em>Curr. Opin. Gastroenterol.</em> <bold>31</bold>, 30–37 (2015)
  40. Linares-Otoya L., Linares-Otoya V., Armas-Mantilla L., Blanco-Olano C., Crüsemann M., Ganoza-Yupanqui M.L., Campos-Florian J., König G.M., Schäberle T.F.: Diversity and antimicrobial potential of predatory bacteria from the Peruvian Coastline. <em>Mar. Drugs</em>, <bold>15</bold>, 308 (2017)
  41. Mahmoud K.K., Koval S.F.: Characterization of type IV pili in the life cycle of the predator bacterium <em>Bdellovibrio</em>. <em>Microbiology</em>, <bold>156(Pt 4)</bold>, 1040–1051 (2010)
  42. Makowski Ł., Trojanowski D., Till R., Lambert C., Lowry R., Sockett R.E., Zakrzewska-Czerwinska J.: Dynamics of chromosome replication and its relationship to predatory attack life-styles in <em>Bdellovibrio bacteriovorus</em>. <em>Appl. Environ. Microbiol.</em> <bold>85(14)</bold>, e00730–19 (2019)
  43. Marine E., Milner D.S., Lambert C., Sockett R.E., Pos K.M.: A novel method to determine antibiotic sensitivity in <em>Bdellovibrio bacteriovorus</em> reveals a DHFR-dependent natural trimethoprim resistance. <em>Sci. Rep.</em> <bold>10</bold>, 1–10 (2020)
  44. Martínez V., Herencias C., Jurkevitch E., Prieto M.A.: Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. <em>Sci. Rep.</em> <bold>6</bold>, 1–12 (2016)
  45. Monnappa A.K., Bari W., Choi S.Y., Mitchell R.J.: Investigating the responses of human epithelial cells to predatory bacteria. <em>Sci. Rep.</em> <bold>6</bold>, 1–14. (2016)
  46. Monnappa A.K., Dwidar M., Mitchell R.J.: Application of bacterial predation to mitigate recombinant bacterial populations and their DNA. <em>Soil Biol. Biochem.</em> <bold>57</bold>, 427–435 (2013)
  47. Mun W., Kwon H., Im H., Choi S.Y., Monnappa A.K., Mitchell R.J.: Cyanide production by <em>Chromobacterium piscinae</em> shields it from <em>Bdellovibrio bacteriovorus</em> HD100 predation. <em>mBio.</em> <bold>8(6)</bold>, 1–12 (2017)
  48. Nair R.R., Vasse M., Wielgoss S., Sun L., Yuen-Tsu N.Y., Velicer G.J.: Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences. <em>Nat. Commun.</em> <bold>10</bold>, 1–10 (2019)
  49. Odooli S., Roghanian R., Ghasemi Y., Mohkam M., Emtiazi G.: Predatory and biocontrol potency of <em>Bdellovibrio bacteriovorus</em> toward phytopathogenic strains of <em>Pantoea</em> sp. and <em>Xanthomonas campestris</em> in the presence of exo-biopolymers: in vitro and in vivo assessments. <em>Int. Microbiol.</em> <bold>1</bold>, 1–15 (2021)
  50. Olanya O., Niemira B., Cassidy J., Boyd G., Uknalis J.: Pathogen reduction by predatory bacteria and survival of <em>Bdellovibrio bacteriovorus</em> and <em>Escherichia coli</em> on produce and buffer treated with low-dose gamma radiation. <em>LWT,</em> <bold>130</bold>, 109630 (2020)
  51. Ottaviani D., Pieralisi S., Angelico G., Mosca F., Tiscar P.G., Rocchegiani E., Scuota S., Petruzzelli A., Fisichella S., Blasi G.: <em>Bdellovibrio bacteriovorus</em> to control <em>Escherichia coli</em> on meat matrices. <em>Int. J. Food Sci.</em> <bold>55</bold>, 988–994 (2020)
  52. Özkan M., Yılmaz H., Çelik M.A., Şengezer Ç., Erhan E., Keskinler B.: Application of <em>Bdellovibrio bacteriovorus</em> for reducing fouling of membranes used for wastewater treatment. <em>Turk Biyokim. Derg.</em> <bold>43</bold>, 296–305 (2018)
  53. Pasternak Z., Njagi M., Shani Y., Chanyi R., Rotem O., Lurie-Weinberger M.N., Koval S., Pietrokovski S., Gophna U., Jurkevitch E.: In and out: an analysis of epibiotic vs periplasmic bacterial predators. <em>ISME J.</em> <bold>8</bold>, 625–635 (2014)
  54. Patini R., Cattani P., Marchetti S., Isola G., Quaranta G., Gallenzi P.: Evaluation of predation capability of periodontopathogens bacteria by <em>Bdellovibrio Bacteriovorus</em> HD100. an in vitro study. <em>Materials,</em> <bold>12(12)</bold>, 2008 (2019)
  55. Rendulic S., Jagtap P., Rosinus A., Eppinger M., Baar C., Lanz C., Keller H., Lambert C., Evans K.J., Goesmann A, et al.: A predator unmasked: life cycle of <em>Bdellovibrio bacteriovorus</em> from a genomic perspective. <em>Science</em>, <bold>303(5658)</bold>, 689–692 (2004)
  56. Romanowski E.G., Gupta S., Pericleous A., Kadouri D.E., Shanks R.M.: Clearance of Gram-Negative Bacterial Pathogens from the Ocular Surface by Predatory Bacteria. <em>Antibiotics,</em> <bold>10</bold>, 810 (2021)
  57. Romanowski E.G., Stella N.A., Brothers K.M., Yates K.A., Funderburgh M.L., Funderburgh J.L., Gupta S., Dharani S., Kadouri D.E., Shanks R.M.: Predatory bacteria are nontoxic to the rabbit ocular surface. <em>Sci. Rep.</em> <bold>6</bold>, 1–9 (2016)
  58. Ruban-Osmiałowska B., Jakimowicz D., Smulczyk-Krawczyszyn A., Chater K.F., Zakrzewska-Czerwinska J.: Replisome localization in vegetative and aerial hyphae of <em>Streptomyces coelicolor</em>. <em>J. Bacteriol.</em> <bold>188(20)</bold>, 7311–7316 (2006)
  59. Russo R., Kolesnikova I., Kim T., Gupta S., Pericleous A., Kadouri D.E., Connell N.D.: Susceptibility of virulent <em>Yersinia pestis</em> bacteria to predator bacteria in the lungs of mice. <em>Microorganisms</em>, <bold>7</bold>, 2 (2019)
  60. Sathyamoorthy R., Kushmaro Y., Rotem O., Matan O., Kadouri D.E., Huppert A., Jurkevitch E.: To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. <em>ISME. J.</em> <bold>15</bold>, 109–123 (2021)
  61. Saxon E.B., Jackson R.W., Bhumbra S., Smith T., Sockett R.E.: <em>Bdellovibrio bacteriovorus</em> HD100 guards against <em>Pseudomonas tolaasii</em> brown-blotch lesions on the surface of post-harvest <em>Agaricus bisporus</em> supermarket mushrooms. <em>BMC Microbiol.</em> <bold>14</bold>, 1–12 (2014)
  62. Schoeffield A.J., Williams H.N., Turng B., Fackler W.A.: A comparison of the survival of intraperiplasmic and attack phase <em>bdellovibrios</em> with reduced oxygen. <em>Microb. Ecol.</em> <bold>32(1)</bold>, 35–46 (1996)
  63. Seidler R.J., Starr M.P.: Factors affecting the intracellular parasitic growth of <em>Bdellovibrio bacteriovorus</em> developing within <em>Escherichia coli</em>. <em>J. Bacteriol.</em> <bold>97(2)</bold>, 912–923 (1969)
  64. Shanks R.M., Davra V.R., Romanowski E.G., Brothers K.M., Stella N.A., Godboley D., Kadouri D.E.: An eye to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular infections. <em>PLoS One,</em> <bold>8</bold>, e66723 (2013)
  65. Shatzkes K., Chae R., Tang C., Ramirez G.C., Mukherjee S., Tsenova L., Connell N.D., Kadouri D.E.: Examining the safety of respiratory and intravenous inoculation of <em>Bdellovibrio bacteriovorus</em> and <em>Micavibrio aeruginosavorus</em> in a mouse model. <em>Sci. Rep.</em> <bold>5</bold>, 1–12 (2015)
  66. Shatzkes K., Singleton E., Tang C., Zuena M., Shukla S., Gupta S., Dharani S., Rinaggio J., Kadouri D.E., Connell N.D.: Examining the efficacy of intravenous administration of predatory bacteria in rats. <em>Sci. Rep.</em> <bold>7</bold>, 1–11 (2017)
  67. Starr M.P., Baigent N.L.: Parasitic interaction of <em>Bdellovibrio bacteriovorus</em> with other bacteria. <em>J. Bacteriol.</em> <bold>91(5)</bold>, 2006–2017 (1966)
  68. Stolp H., Starr M.P.: <em>Bdellovibrio bacteriovorus</em> gen. et sp.n., a predatory, ectoparasitic, and bacteriolytic microorganism. <em>Antonie Van Leeuwenhoek</em>, <bold>29(1)</bold>, 217–248 (1963)
  69. Thomashow M.F., Cotter T.W.: <em>Bdellovibrio</em> host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. <em>J. Bacteriol.</em> <bold>174(18)</bold>, 5767–5771 (1992)
  70. Thomashow M.F., Rittenberg S.C.: Intraperiplasmic growth of <em>Bdellovibrio bacteriovorus</em> 109J: solubilization of <em>Escherichia coli</em> peptidoglycan. <em>J. Bacteriol.</em> <bold>135(3)</bold>, 998–1007 (1978)
  71. Tudor J.J., McCann M.P., Acrich I.A.: A new model for the penetration of prey cells by <em>bdellovibrios</em>. <em>J. Bacteriol.</em> <bold>172(5)</bold>, 2421–2426 (1990)
  72. Tyc O., Song C., Dickschat J.S., Vos M., Garbeva P.: The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. <em>Trends Microbiol.</em> <bold>25(4)</bold>, 280–292 (2017)
  73. Waso M., Khan S., Singh A., McMichael S., Ahmed W., Fernandez-Ibanez P., Byrne J., Khan W.: Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. <em>Water Res.</em> <bold>169</bold>, 115281 (2020)
  74. Wen C., Xue M., Liang H., Zhou S.: Evaluating the potential of marine <em>Bacteriovorax</em> sp. DA5 as a biocontrol agent against vibriosis in <em>Litopenaeus vannamei</em> larvae. <em>Vet. Microbiol.</em> <bold>173</bold>, 84–91 (2014)
  75. Willis A.R., Moore C., Mazon-Moya M., Krokowski S., Lambert C., Till R., Mostowy S., Sockett R.E.: Injections of predatory bacteria work alongside host immune cells to treat <em>Shigella</em> infection in zebrafish larvae. <em>Curr. Biol.</em> <bold>26</bold>, 3343–3351 (2016)
  76. Wolanski M., Wali R., Tilley E., Jakimowicz D., Zakrzewska-Czerwinska J., Herron P.: Replisome trafficking in growing vegetative hyphae of <em>Streptomyces coelicolor</em> A3(2). <em>J. Bacteriol.</em> <bold>193(5)</bold>, 1273–1275 (2011)
  77. Youdkes D., Helman Y., Burdman S., Matan O., Jurkevitch E.: Potential control of potato soft rot disease by the obligate predators bdellovibrio and like organisms. <em>Appl. Environ. Microbiol.</em> <bold>86(6)</bold>, 1–13 (2020)
DOI: https://doi.org/10.2478/am-2022-018 | Journal eISSN: 2545-3149 | Journal ISSN: 0079-4252
Language: English, Polish
Page range: 169 - 178
Submitted on: May 1, 2022
Accepted on: Sep 1, 2022
Published on: Nov 30, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Tayyab Saleem, Muhammad Ishfaq, Muhammad Faheem, Syed Babar Jamal, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.