Abram D., Castro e Melo J., Chou D.: Penetration of <em>Bdellovibrio bacteriovorus</em> into host cells. <em>J. Bacteriol.</em> <bold>118(2)</bold>, 663–680 (1974)
Baker M., Negus D., Raghunathan D., Radford P., Moore C., Clark G., Diggle M., Tyson J., Twycross J., Sockett R.E.: Measuring and modelling the response of <em>Klebsiella pneumoniae</em> KPC prey to <em>Bdellovibrio bacteriovorus</em> predation, in human serum and defined buffer. <em>Sci. Rep.</em> <bold>7</bold>, 1–18 (2017)
Bratanis E., Molina H., Naegeli A., Collin M., Lood R.: BspK, a serine protease from the predatory bacterium <em>Bdellovibrio bacteriovorus</em> with utility for analysis of therapeutic antibodies. <em>Appl. Environ. Microbiol.</em> <bold>83</bold>, e03037–16 (2017)
Bukowska-Faniband E., Andersson T., Lood R.: Studies on Bd0934 and Bd3507, two secreted nucleases from <em>Bdellovibrio bacteriovorus</em>, reveal sequential release of nucleases during the predatory cycle. <em>J. Bacteriol.</em> <bold>202</bold>, e00150–20 (2020)
Burnham J.C., Hashimoto T., Conti S.F.: Electron microscopic observations on the penetration of <em>Bdellovibrio bacteriovorus</em> into gram-negative bacterial hosts. <em>J. Bacteriol.</em> <bold>96(4)</bold>, 1366–1381 (1968)
Cao H., An J., Zheng W., He S.: <em>Vibrio cholerae</em> pathogen from the freshwater-cultured whiteleg shrimp <em>Penaeus vannamei</em> and control with <em>Bdellovibrio bacteriovorus</em>. <em>J. Invertebr. Pathol.</em> <bold>130</bold>, 13–20 (2015)
Cao H., Wang H., Yu J., An J., Chen J.: Encapsulated <em>bdellovibrio</em> powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic vibrios. <em>Microorganisms</em>, <bold>7(8)</bold>, 244 (2019)
Carbonnelle E., H elaine S., Prouvensier L., Nassif X, Pelicic V.: Type IV pilus biogenesis in <em>Neisseria meningitidis</em>: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. <em>Mol. Microbiol.</em> <bold>55(1)</bold>, 54–64 (2005)
Chanyi R.M., Koval S.F.: Role of type IV Pili in predation by <em>Bdellovibrio bacteriovorus</em>. <em>PLoS One</em>, <bold>9(11)</bold>, e113404 (2014)
Chen X., Yi H., Liu S., Zhang Y., Su Y., Liu X., Bi S., Lai H., Zeng Z., Li G.: Promotion of pellet-feed feeding in mandarin fish (<em>Siniperca chuatsi</em>) by <em>Bdellovibrio bacteriovorus</em> is influenced by immune and intestinal flora. <em>Aquaculture</em>, <bold>542</bold>, 736864 (2021)
Dashiff A., Junka R., Libera M., Kadouri D.: Predation of human pathogens by the predatory bacteria <em>Micavibrio aeruginosavorus</em> and <em>Bdellovibrio bacteriovorus</em>. <em>J. Appl. Microbiol.</em> <bold>110</bold>, 431–444 (2011)
Dashiff A., Keeling T.G., Kadouri D.E.: Inhibition of predation by <em>Bdellovibrio bacteriovorus</em> and <em>Micavibrio aeruginosavorus</em> via host cell metabolic activity in the presence of carbohydrates. <em>Appl. Environ. Microbiol.</em> <bold>77(7)</bold>, 2224–2231 (2011)
Deeg C.M., Le T.T., Zimmer M.M., Suttle C.A.: From the inside out: An epibiotic <em>Bdellovibrio</em> predator with an expanded genomic complement. <em>J. Bacteriol.</em> <bold>202</bold>, e00565–19 (2020)
Dwidar M., Monnappa A.K., Mitchell R.J.: The dual probiotic and antibiotic nature of <em>Bdellovibrio bacteriovorus</em>. <em>BMB Rep.</em> <bold>45(2)</bold>, 71–78 (2012)
Dwidar M., Nam D., Mitchell R.J.: Indole negatively impacts predation by <em>Bdellovibrio bacteriovorus</em> and its release from the bdelloplast. <em>Environ. Microbiol.</em> <bold>17</bold>, 1009–1022 (2015)
Hobley L., Fung R.K., Lambert C., Harris M.A., Dabhi J.M., King S.S., Basford S.M., Uchida K., Till R., Ahmad R.: Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in <em>Bdellovibrio bacteriovorus</em>. <em>PLoS. Pathog.</em> <bold>8</bold>, e1002493 (2012)
Hobley L., Summers J.K., Till R., Milner D.S., Atterbury R.J., Stroud A., Capeness M.J., Gray S., Leidenroth A., Lambert C.: Dual predation by bacteriophage and <em>Bdellovibrio bacteriovorus</em> can eradicate <em>Escherichia coli</em> prey in situations where single predation cannot. <em>J. Bacteriol.</em> <bold>202</bold>, e00629–19 (2020)
Iebba V., Santangelo F., Totino V., Nicoletti M., Gagliardi A., De Biase R.V., Cucchiara S., Nencioni L., Conte M.P., Schippa S.: Higher prevalence and abundance of <em>Bdellovibrio bacteriovorus</em> in the human gut of healthy subjects. <em>PloS One</em>, <bold>8</bold>, e61608 (2013)
Im H., Choi S.Y., Son S., Mitchell R.J.: Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. <em>Sci. Rep.</em> <bold>7</bold>, 1–10 (2017)
Im H., Son S., Mitchell R.J., Ghim C-M.: Serum albumin and osmolality inhibit <em>Bdellovibrio bacteriovorus</em> predation in human serum. <em>Sci. Rep.</em> <bold>7</bold>, 1–9 (2017)
Kadouri D.E., To K., Shanks R.M., Doi Y.: Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. <em>PloS One</em>, <bold>8</bold>, e63397 (2013)
Kuru E., Lambert C., Rittichier J., Till R., Ducret A., Derouaux A., Gray J., Biboy J., Vollmer W., VanNieuwenhze M, et al.: Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for <em>Bdellovibrio bacteriovorus</em> predation. <em>Nat. Microbiol.</em> <bold>2(12)</bold>, 1648–1657 (2017)
Lambert C., Evans K.J., Till R., Hobley L., Capeness M., Rendulic S., Schuster S.C., Aizawa S-I., Sockett R.E.: Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by <em>Bdellovibrio bacteriovorus</em>. <em>Mol. Microbiol.</em> <bold>60(2)</bold>, 274–286 (2006)
Lambert C., Ivanov P., Sockett RE.: A transcriptional “Scream” early response of <em>E. coli</em> prey to predatory invasion by <em>Bdellovibrio</em>. <em>Curr. Microbiol.</em> <bold>60</bold>, 419–427 (2010)
Lima I.F., Havt A., Lima A.A.: Update on molecular epidemiology of <em>Shigella</em> infection. <em>Curr. Opin. Gastroenterol.</em> <bold>31</bold>, 30–37 (2015)
Mahmoud K.K., Koval S.F.: Characterization of type IV pili in the life cycle of the predator bacterium <em>Bdellovibrio</em>. <em>Microbiology</em>, <bold>156(Pt 4)</bold>, 1040–1051 (2010)
Makowski Ł., Trojanowski D., Till R., Lambert C., Lowry R., Sockett R.E., Zakrzewska-Czerwinska J.: Dynamics of chromosome replication and its relationship to predatory attack life-styles in <em>Bdellovibrio bacteriovorus</em>. <em>Appl. Environ. Microbiol.</em> <bold>85(14)</bold>, e00730–19 (2019)
Martínez V., Herencias C., Jurkevitch E., Prieto M.A.: Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. <em>Sci. Rep.</em> <bold>6</bold>, 1–12 (2016)
Monnappa A.K., Bari W., Choi S.Y., Mitchell R.J.: Investigating the responses of human epithelial cells to predatory bacteria. <em>Sci. Rep.</em> <bold>6</bold>, 1–14. (2016)
Monnappa A.K., Dwidar M., Mitchell R.J.: Application of bacterial predation to mitigate recombinant bacterial populations and their DNA. <em>Soil Biol. Biochem.</em> <bold>57</bold>, 427–435 (2013)
Mun W., Kwon H., Im H., Choi S.Y., Monnappa A.K., Mitchell R.J.: Cyanide production by <em>Chromobacterium piscinae</em> shields it from <em>Bdellovibrio bacteriovorus</em> HD100 predation. <em>mBio.</em> <bold>8(6)</bold>, 1–12 (2017)
Odooli S., Roghanian R., Ghasemi Y., Mohkam M., Emtiazi G.: Predatory and biocontrol potency of <em>Bdellovibrio bacteriovorus</em> toward phytopathogenic strains of <em>Pantoea</em> sp. and <em>Xanthomonas campestris</em> in the presence of exo-biopolymers: in vitro and in vivo assessments. <em>Int. Microbiol.</em> <bold>1</bold>, 1–15 (2021)
Olanya O., Niemira B., Cassidy J., Boyd G., Uknalis J.: Pathogen reduction by predatory bacteria and survival of <em>Bdellovibrio bacteriovorus</em> and <em>Escherichia coli</em> on produce and buffer treated with low-dose gamma radiation. <em>LWT,</em> <bold>130</bold>, 109630 (2020)
Özkan M., Yılmaz H., Çelik M.A., Şengezer Ç., Erhan E., Keskinler B.: Application of <em>Bdellovibrio bacteriovorus</em> for reducing fouling of membranes used for wastewater treatment. <em>Turk Biyokim. Derg.</em> <bold>43</bold>, 296–305 (2018)
Rendulic S., Jagtap P., Rosinus A., Eppinger M., Baar C., Lanz C., Keller H., Lambert C., Evans K.J., Goesmann A, et al.: A predator unmasked: life cycle of <em>Bdellovibrio bacteriovorus</em> from a genomic perspective. <em>Science</em>, <bold>303(5658)</bold>, 689–692 (2004)
Ruban-Osmiałowska B., Jakimowicz D., Smulczyk-Krawczyszyn A., Chater K.F., Zakrzewska-Czerwinska J.: Replisome localization in vegetative and aerial hyphae of <em>Streptomyces coelicolor</em>. <em>J. Bacteriol.</em> <bold>188(20)</bold>, 7311–7316 (2006)
Russo R., Kolesnikova I., Kim T., Gupta S., Pericleous A., Kadouri D.E., Connell N.D.: Susceptibility of virulent <em>Yersinia pestis</em> bacteria to predator bacteria in the lungs of mice. <em>Microorganisms</em>, <bold>7</bold>, 2 (2019)
Sathyamoorthy R., Kushmaro Y., Rotem O., Matan O., Kadouri D.E., Huppert A., Jurkevitch E.: To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. <em>ISME. J.</em> <bold>15</bold>, 109–123 (2021)
Schoeffield A.J., Williams H.N., Turng B., Fackler W.A.: A comparison of the survival of intraperiplasmic and attack phase <em>bdellovibrios</em> with reduced oxygen. <em>Microb. Ecol.</em> <bold>32(1)</bold>, 35–46 (1996)
Shanks R.M., Davra V.R., Romanowski E.G., Brothers K.M., Stella N.A., Godboley D., Kadouri D.E.: An eye to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular infections. <em>PLoS One,</em> <bold>8</bold>, e66723 (2013)
Shatzkes K., Chae R., Tang C., Ramirez G.C., Mukherjee S., Tsenova L., Connell N.D., Kadouri D.E.: Examining the safety of respiratory and intravenous inoculation of <em>Bdellovibrio bacteriovorus</em> and <em>Micavibrio aeruginosavorus</em> in a mouse model. <em>Sci. Rep.</em> <bold>5</bold>, 1–12 (2015)
Shatzkes K., Singleton E., Tang C., Zuena M., Shukla S., Gupta S., Dharani S., Rinaggio J., Kadouri D.E., Connell N.D.: Examining the efficacy of intravenous administration of predatory bacteria in rats. <em>Sci. Rep.</em> <bold>7</bold>, 1–11 (2017)
Stolp H., Starr M.P.: <em>Bdellovibrio bacteriovorus</em> gen. et sp.n., a predatory, ectoparasitic, and bacteriolytic microorganism. <em>Antonie Van Leeuwenhoek</em>, <bold>29(1)</bold>, 217–248 (1963)
Thomashow M.F., Cotter T.W.: <em>Bdellovibrio</em> host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. <em>J. Bacteriol.</em> <bold>174(18)</bold>, 5767–5771 (1992)
Tudor J.J., McCann M.P., Acrich I.A.: A new model for the penetration of prey cells by <em>bdellovibrios</em>. <em>J. Bacteriol.</em> <bold>172(5)</bold>, 2421–2426 (1990)
Tyc O., Song C., Dickschat J.S., Vos M., Garbeva P.: The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. <em>Trends Microbiol.</em> <bold>25(4)</bold>, 280–292 (2017)
Waso M., Khan S., Singh A., McMichael S., Ahmed W., Fernandez-Ibanez P., Byrne J., Khan W.: Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater. <em>Water Res.</em> <bold>169</bold>, 115281 (2020)
Wen C., Xue M., Liang H., Zhou S.: Evaluating the potential of marine <em>Bacteriovorax</em> sp. DA5 as a biocontrol agent against vibriosis in <em>Litopenaeus vannamei</em> larvae. <em>Vet. Microbiol.</em> <bold>173</bold>, 84–91 (2014)
Willis A.R., Moore C., Mazon-Moya M., Krokowski S., Lambert C., Till R., Mostowy S., Sockett R.E.: Injections of predatory bacteria work alongside host immune cells to treat <em>Shigella</em> infection in zebrafish larvae. <em>Curr. Biol.</em> <bold>26</bold>, 3343–3351 (2016)
Wolanski M., Wali R., Tilley E., Jakimowicz D., Zakrzewska-Czerwinska J., Herron P.: Replisome trafficking in growing vegetative hyphae of <em>Streptomyces coelicolor</em> A3(2). <em>J. Bacteriol.</em> <bold>193(5)</bold>, 1273–1275 (2011)
Youdkes D., Helman Y., Burdman S., Matan O., Jurkevitch E.: Potential control of potato soft rot disease by the obligate predators bdellovibrio and like organisms. <em>Appl. Environ. Microbiol.</em> <bold>86(6)</bold>, 1–13 (2020)