Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004. https://doi.org/10.1073/pnas.0307323101
Chen L, Hu W, Li G et al (2019a) Inhibition of miR-9-5p suppresses prostate cancer progress by targeting Star D13. Cell Mol Biol Lett 24:20.https://doi.org/10.1186/s11658-019-0145-1
Chen ZJ, Yan YJ, Shen H et al (2019b) miR-192 is overexpressed and promotes cell proliferation in prostate cancer. Med Princ Pract 28:124–132. https://doi.org/10.1159/000496206
Chu YD, Lai HY, Pai LM et al (2019) The methionine salvage pathway-involving ADI1 inhibits hepatoma growth by epigenetically altering genes expression via elevating S-adenosylmethionine. Cell Death Dis 10:240. https://doi.org/10.1038/s41419-019-1486-4
Davies A, Zoubeidi A, Selth LA (2020) The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocr Relat Cancer 27:R35–R50. https://doi.org/10.1530/ERC-19-0420
Del Valle-Morales D, Le P, Saviana M et al (2022) The epitranscriptome in miRNAs: Crosstalk, detection, and function in cancer. Genes 13:1289. https://doi.org/10.3390/genes13071289
Hu P, Wang T, Yan H et al (2023) Crucial role of hsa-mir-503, hsa-mir-1247, and their validation in prostate cancer. Aging (Albany NY) 15:12966–12981. https://doi.org/10.18632/aging.205213
Hussen BM, Abdullah ST, Salihi A et al (2022) The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 230:153760. https://doi.org/10.1016/j.prp.2022.153760
Joshi G, Singh PK, Negi A et al (2015) Growth factors mediated cell signaling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem Biol Interact 240:120–133. https://doi.org/10.1016/j.cbi.2015.08.009
Kubala MH, De Clerck YA (2019) The plasminogen activator inhibitor-1 paradox in cancer: A mechanistic understanding. Cancer Metastasis Rev 38:483–492. https://doi.org/10.1007/s10555-019-09806-4
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. https://doi.org/10.1016/0092-8674(93)90529-y
Luthold C, Hallal T, Labbé DP et al (2022) The extracellular matrix stiffening: A trigger of prostate cancer progression and castration resistance? Cancers (Basel) 14:2887. https://doi.org/10.3390/cancers14122887
Mathes A, Duman MB, Neumann A et al (2024) S-adenosylmethionine treatment affects histone methylation in prostate cancer cells. Gene 893:147915. https://doi.org/10.1016/j.gene.2023.147915
Misiewicz-Krzeminska I, Krzeminski P, Corchete LA et al (2019) Factors regulating microRNA expression and function in multiple myeloma. Noncoding RNA 5:9. https://doi.org/10.3390/ncrna5010009
Mosca L, Vitiello F, Borzacchiello L et al (2021) Mutual correlation between non-coding RNA and S-adenosylmethionine in human cancer: Roles and therapeutic opportunities. Cancers 13:3264. https://doi.org/10.3390/cancers13133264
Müller S, Rycak L, Winter P et al (2013) omiRas: A Web server for differential expression analysis of miRNAs derived from small RNA-Seq data. Bioinformatics 29:2651–2652. https://doi.org/10.1093/bioinformatics/btt457
Pagano M, Mosca L, Vitiello F et al (2020) Mi-RNA-888-5p is involved in S-adenosylmethionine antitumor effects in laryngeal squamous cancer cells. Cancers (Basel) 12:3665. https://doi.org/10.3390/cancers12123665
Pejčić T, Todorović Z, Đurašević S et al (2023) Mechanisms of prostate cancer cells survival and their therapeutic targeting. Int J Mol Sci 24:2939. https://doi.org/10.3390/ijms24032939
Perri F, Longo F, Giuliano M et al (2017) Epigenetic control of gene expression: Potential implications for cancer treatment. Crit Rev Oncol Hematol 111:166–172. https://doi.org/10.1016/j.critrevonc.2017.01.020
Provera MD, Straign DM, Karimpour P et al (2023) Bone morphogenetic protein pathway responses and alterations of osteogenesis in metastatic prostate cancers. Cancer (Hoboken) Rep 6:e1707. https://doi.org/10.1002/cnr2.1707
Reinhart BJ, Slack FJ, Basson M, et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906.
Schmidt T, Leha A, Salinas-Riester G (2016) Treatment of prostate cancer cells with S-adenosylmethionine leads to genome-wide alterations in transcription profiles. Gene 595:161–167. https://doi.org/10.1016/j.gene.2016.09.032
Takeshima H, Ushijima T (2019) Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol 3:7. https://doi.org/10.1038/s41698-019-0079-0
Tomasi ML, Cossu C, Spissu Y et al (2017) S-adenosylmethionine and methylthioadenosine inhibit cancer metastasis by targeting MicroRNA 34a/b-methionine adenosyltransferase 2A/2B axis. Oncotarget 8:78851–78869. https://doi.org/10.18632/oncotarget.20234
Vaghf A, Khansarinejad B, Ghaznavi-Rad E et al (2022) The role of microRNAs in diseases and related signaling pathways. Mol Biol Rep 49:6789–6801. https://doi.org/10.1007/s11033-021-06725-y
Wang L, Feng Z, Wang X et al (2010) DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. https://doi.org/10.1093/bioinformatics/btp612