Have a personal or library account? Click to login
Transplantation of Donor–Recipient Chimeric Cells Restores Peripheral Blood Cell Populations and Increases Survival after Total Body Irradiation-Induced Injury in a Rat Experimental Model Cover

Transplantation of Donor–Recipient Chimeric Cells Restores Peripheral Blood Cell Populations and Increases Survival after Total Body Irradiation-Induced Injury in a Rat Experimental Model

Open Access
|May 2024

References

  1. Baranov A, Gale RP, Guskova A et al (1989) Bone marrow transplantation after the Chernobyl nuclear accident. N Engl J Med 321:205–212. <a href="https://doi.org/10.1056/NEJM198907273210401" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1056/NEJM198907273210401</a>
  2. Basic-Jukić N, Labar B (2003) [Immunosuppressive drugs in the prevention and treatment of GVHD after allogeneic bone marrow transplantation] (in Croatian). Acta Med Croatica 57:131–139.
  3. Billingham RE (1966) The biology of graft-versus-host reactions. Harvey Lect 62:21–78.
  4. Coeytaux K, Bey E, Christensen D et al (2015) Reported radiation overexposure accidents worldwide, 1980–2013: A systematic review. PLoS One 10:e0118709. <a href="https://doi.org/10.1371/journal.pone.0118709" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0118709</a>
  5. Cwykiel J, Jundzill A, Klimczak A et al (2021a) Donor recipient chimeric cells induce chimerism and extend survival of vascularized composite allografts. Arch Immunol Ther Exp 69:13. <a href="https://doi.org/10.1007/s00005-021-00614-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00005-021-00614-9</a>
  6. Cwykiel J, Klimczak A, Jundzill A et al (2011) Therapeutic potential of ex-vivo fused chimeric cells in prolonging vascularized skin allograft survival. Plast Reconstr Surg 127:26. <a href="https://doi.org/10.1097/01.prs.0000396723.40767.22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.prs.0000396723.40767.22</a>
  7. Cwykiel J, Kwiecień GJ (2015) Cellular therapies in post-radiation syndrome. In: Siemionow M (ed) Plastic and reconstructive surgery: Experimental models and research designs. Springer, London, Heidelberg, New York, pp 629–636.
  8. Cwykiel J, Madajka-Niemeyer M, Siemionow M (2021b) Development of donor recipient chimeric cells of bone marrow origin as a novel approach for tolerance induction in transplantation. Stem Cell Investig 8:8. <a href="https://doi.org/10.21037/sci-2020-044" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21037/sci-2020-044</a>
  9. Cwykiel J, Siemionow M (2014) Cellular therapy models: Ex vivo chimera model by cell fusion. Plast Reconstr Surg 29:593–603. <a href="https://doi.org/10.1007/978-1-4471-6335-0_72" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-1-4471-6335-0_72</a>
  10. Cwykiel J, Siemionow M (2015) In vivo chimera model: Creation of primary and secondary chimera. In: Siemionow M (ed) Plastic and reconstructive surgery: Experimental models and research designs. Springer, London, Heidelberg, New York, pp 581–591.
  11. Ghimire S, Weber D, Mavin E et al (2017) Pathophysiology of GvHD and other HSCT-related major complications. Front Immunol 8:79. <a href="https://doi.org/10.3389/fimmu.2017.00079" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2017.00079</a>
  12. Gourmelon P, Benderitter M, Bertho JM et al (2010) European consensus on the medical management of acute radiation syndrome and analysis of the radiation accidents in Belgium and Senegal. Health Phys 98:825–832. <a href="https://doi.org/10.1097/HP.0b013e3181ce64d4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/HP.0b013e3181ce64d4</a>
  13. Hagby M, Goldberg A, Becker S et al (2009) Health implications of radiological terrorism: Perspectives from Israel. J Emerg Trauma Shock 2:117–123. <a href="https://doi.org/10.4103/0974-2700.50747" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4103/0974-2700.50747</a>
  14. Heslet L, Bay C, Nepper-Christensen S (2012) Acute radiation syndrome (ARS) – Treatment of the reduced host defense. Int J Gen Med 5:105–115. <a href="https://doi.org/10.2147/IJGM.S22177" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/IJGM.S22177</a>
  15. Hirama T, Tanosaki S, Kandatsu S et al (2003) Initial medical management of patients severely irradiated in the Tokai-mura accident. Br J Radiol 76:246–253. <a href="https://doi.org/10.1259/bjr/82373369" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1259/bjr/82373369</a>
  16. Hivelin M, Klimczak A, Cwykiel J et al (2016) Immunomodulatory effects of different cellular therapies of bone marrow origin on chimerism induction and maintenance across MHC barriers in a face allotransplantation model. Arch Immunol Ther Exp 64: 299–310. <a href="https://doi.org/10.1007/s00005-015-0380-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00005-015-0380-8</a>
  17. Hollingsworth BA, Aldrich JT, Case CM Jr et al (2023) Immune dysfunction from radiation exposure. Radiat Res 200:396–416. <a href="https://doi.org/10.1667/RADE-22-00004.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1667/RADE-22-00004.1</a>
  18. Jackson IL, Gurung G, Ayompe E et al (2021) Characterization of the hemorrhagic syndrome in the New Zealand white rabbit model following total body irradiation. Int J Radiat Biol 97:S32–S44. <a href="https://doi.org/10.1080/09553002.2020.1820601" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/09553002.2020.1820601</a>
  19. Klimczak A, Unal S, Jankowska A et al (2007) Donor-origin cell engraftment after intraosseous or intravenous bone marrow transplantation in a rat model. Bone Marrow Transplant 40: 373–380. <a href="https://doi.org/10.1038/sj.bmt.1705743" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/sj.bmt.1705743</a>
  20. Koch A, Gulani J, King G et al (2016) Establishment of early endpoints in mouse total-body irradiation model. PLoS One 11:e0161079. <a href="https://doi.org/10.1371/journal.pone.0161079" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0161079</a>
  21. Lim M, Wang W, Liang L et al (2018) Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther 9:129. <a href="https://doi.org/10.1186/s13287-018-0888-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13287-018-0888-z</a>
  22. López M, Martín M (2011) Medical management of the acute radiation syndrome. Rep Pract Oncol Radiother 16:138–146. <a href="https://doi.org/10.1016/j.rpor.2011.05.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rpor.2011.05.001</a>
  23. Macià I Garau M, Lucas Calduch A, López EC (2011) Radiobiology of the acute radiation syndrome. Rep Pract Oncol Radiother 16:123–130. <a href="https://doi.org/10.1016/j.rpor.2011.06.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rpor.2011.06.001</a>
  24. Mettler FA Jr., Gus’kova AK, Gusev I (2007) Health effects in those with acute radiation sickness from the Chernobyl accident. Health Phys 93:462–469. <a href="https://doi.org/10.1097/01.HP.0000278843.27969.74" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.HP.0000278843.27969.74</a>
  25. Moris D, Cendales LC (2021) Sensitization and desensitization in vascularized composite allotransplantation. Front Immunol 12:682180. <a href="https://doi.org/10.3389/fimmu.2021.682180" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2021.682180</a>
  26. Ossetrova NI, Ney PH, Condliffe DP et al (2016) Acute radiation syndrome severity score system in mouse total-body irradiation model. Health Phys 111:134–144. <a href="https://doi.org/10.1097/HP.0000000000000499" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/HP.0000000000000499</a>
  27. Ostheim P, Don Mallawaratchy A, Müller T et al (2021) Acute radiation syndrome-related gene expression in irradiated peripheral blood cell populations. Int J Radiat Biol 97:474–484. <a href="https://doi.org/10.1080/09553002.2021.1876953" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/09553002.2021.1876953</a>
  28. Schroeder MA, DiPersio JF (2011) Mouse models of graft-versus-host disease: Advances and limitations. Dis Model Mech 4: 318–333. <a href="https://doi.org/10.1242/dmm.006668" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1242/dmm.006668</a>
  29. Shulman HM, Cardona DM, Greenson JK et al (2015) NIH Consensus development project on criteria for clinical trials in chronic graft-versus-host disease: II. The 2014 Pathology Working Group Report. Biol Blood Marrow Transplant 21:589–603. <a href="https://doi.org/10.1016/j.bbmt.2014.12.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbmt.2014.12.031</a>
  30. Siemionow M, Cwykiel J, Chambily L, Gacek S, Brodowska S. Novel Human Umbilical Di-Chimeric (HUDC) cell therapy for transplantation without life-long immunosuppression. Stem Cell Investig. 2023 Aug 14;10:16; <a href="https://doi.org/10.21037/sci-2023-02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21037/sci-2023-02</a>
  31. Siemionow M, Cwykiel J, Marchese E et al (2018b) A novel human myoblast chimeric cells therapy for restoration of muscle function. Transplantation 102:S355. <a href="https://doi.org/10.1097/01.tp.0000543097.21030.13" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1097/01.tp.0000543097.21030.13</a>
  32. Siemionow M, Cwykiel J, Madajka M (2015) Bone marrow-derived ex vivo created hematopoietic chimeric cells to support engraftment and maintain long-term graft survival in reconstructive transplantation. In: Brandacher G (ed) The science of reconstructive transplantation. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY, pp 227–254. <a href="https://doi.org/10.1007/978-1-4939-2071-6_16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-1-4939-2071-6_16</a>
  33. Siemionow M, Cwykiel J, Heydemann A et al (2018a) Creation of dystrophin expressing chimeric cells of myoblast origin as a novel stem cell based therapy for Duchenne muscular dystrophy. Stem Cell Rev Rep 14:189–199. <a href="https://doi.org/10.1007/s12015-017-9792-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12015-017-9792-7</a>
  34. Siemionow MZ, Klimczak A, Unal S (2005a) Different routes of donor-derived hematopoietic stem cell transplantation for donor-specific chimerism induction across MHC barrier. Transplant Proc 37:62–64. <a href="https://doi.org/10.1016/j.transproceed.2004.12.216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.transproceed.2004.12.216</a>
  35. Siemionow M, Zielinski M, Ozmen S et al (2005b) Intraosseus transplantation of donor-derived hematopoietic stem and progenitor cells induces donor-specific chimerism and extends composite tissue allograft survival. Transplant Proc 37:2303–2308. <a href="https://doi.org/10.1016/j.transproceed.2005.03.127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.transproceed.2005.03.127</a>
  36. Srinagesh HK, Levine JE, Ferrara JLM (2019) Biomarkers in acute graft-versus-host disease: New insights. Ther Adv Hematol 10:2040620719891358. <a href="https://doi.org/10.1177/2040620719891358" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/2040620719891358</a>
  37. Weisdorf D, Chao N, Waselenko JK et al (2006) Acute radiation injury: Contingency planning for triage, supportive care, and transplantation. Biol Blood Marrow Transplant 12:672–682. <a href="https://doi.org/10.1016/j.bbmt.2006.02.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbmt.2006.02.006</a>
Language: English
Submitted on: Feb 26, 2024
Accepted on: Apr 11, 2024
Published on: May 23, 2024
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Maria Siemionow, Małgorzata Cyran, Katarzyna Stawarz, Lucile Chambily, Krzysztof Kusza, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.