Akinduro O, Sully K, Patel A et al (2016) Constitutive autophagy and nucleophagy during epidermal differentiation. J Invest Dermatol 136:1460–1470. <a href="https://doi.org/10.1016/j.jid.2016.03.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2016.03.016</a>
Albanesi C, Madonna S, Gisondi P et al (2018) The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front Immunol 9:1549. <a href="https://doi.org/10.3389/fimmu.2018.01549" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2018.01549</a>
Al-Daraji WI, Grant KR, Ryan K et al (2002) Localization of calcineurin/NFAT in human skin and psoriasis and inhibition of calcineurin/NFAT activation in human keratinocytes by cyclosporin A. J Invest Dermatol 118:779–788. <a href="https://doi.org/10.1046/j.1523-1747.2002.01709.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1046/j.1523-1747.2002.01709.x</a>
Al-Daraji WI, Malak TT, Prescott RJ et al (2009) Expression, localisation and functional activation of NFAT-2 in normal human skin, psoriasis, and cultured keratocytes. Int J Clin Exp Med 2:176–192.
Amaravadi R, Kimmelman AC, White E (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913–1930. <a href="https://doi.org/10.1101/gad.287524.116" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1101/gad.287524.116</a>
Angiolilli C, Leijten EFA, Bekker CPJ et al (2022) ZFP36 family members regulate the proinflammatory features of psoriatic dermal fibroblasts. J Invest Dermatol 142:402–413. <a href="https://doi.org/10.1016/j.jid.2021.06.030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2021.06.030</a>
Arbogast F, Arnold J, Hammann P et al (2019) ATG5 is required for B cell polarization and presentation of particulate antigens. Autophagy 15:280–294. <a href="https://doi.org/10.1080/15548627.2018.1516327" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2018.1516327</a>
Arnold J, Murera D, Arbogast F et al (2016) Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses. Cell Death Differ 23:8538–8564. <a href="https://doi.org/10.1038/cdd.2015.149" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/cdd.2015.149</a>
Balato A, di Caprio R, Lembo S et al (2014) Mammalian target of rapamycin in inflammatory skin conditions. Eur J Inflamm 12:341–350. <a href="https://doi.org/10.1177/1721727X1401200213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/1721727X1401200213</a>
Belleudi F, Leone L, Nobili V et al (2007) Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic 8:1854–1872. <a href="https://doi.org/10.1111/j.1600-0854.2007.00651.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1600-0854.2007.00651.x</a>
Benoit-Lizon I, Jacquin E, Apetoh L (2018) Selective autophagy restricts IL-9 secretion from TH9 cells: Relevance in cancer growth. Cell Cycle 17:391–392. <a href="https://doi.org/10.1080/15384101.2017.1414680" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15384101.2017.1414680</a>
Bento CF, Renna M, Ghislat G et al (2016) Mammalian autophagy: How does it work? Annu Rev Biochem 85:685–713. <a href="https://doi.org/10.1146/annurev-biochem-060815-014556" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1146/annurev-biochem-060815-014556</a>
Bernard FX, Morel F, Camus M et al (2012) Keratinocytes under fire of proinflammatory cytokines: Bona fide innate immune cells involved in the physiopathology of chronic atopic dermatitis and psoriasis. J Allergy 2012:718725. <a href="https://doi.org/10.1155/2012/718725" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2012/718725</a>
Bernink JH, Peters CP, Munneke M et al (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229. <a href="https://doi.org/10.1038/ni.2534" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ni.2534</a>
Bjørkøy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. <a href="https://doi.org/10.1083/jcb.200507002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1083/jcb.200507002</a>
Bocheńska K, Moskot M, Malinowska M et al (2019) Lysosome alterations in the human epithelial cell line hacat and skin specimens: Relevance to psoriasis. Int J Mol Sci 20:225. <a href="https://doi.org/10.3390/ijms20092255" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms20092255</a>
Bonam SR, Wang F, Muller S (2019) Lysosomes as a therapeutic target. Nat Rev Drug Discov 18:923–948. <a href="https://doi.org/10.1038/s41573-019-0036-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41573-019-0036-1</a>
Botbol Y, Macian F (2015) Assays for monitoring macroautophagy activity in T cells. Methods Mol Biol 1343:143–53. <a href="https://doi.org/10.1007/978-1-4939-2963-4_12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-1-4939-2963-4_12</a>
Botbol Y, Patel B, Macian F (2015) Common γ-chain cytokine signaling is required for macroautophagy induction during CD4<sup>+</sup> T-cell activation. Autophagy 11:1864–1877. <a href="https://doi.org/10.1080/15548627.2015.1089374" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2015.1089374</a>
Boyman O, Hefti HP, Conrad C et al (2004) Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J Exp Med 199:731–736. <a href="https://doi.org/10.1084/jem.20031482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1084/jem.20031482</a>
Brady OA, Martina JA, Puertollano R (2018) Emerging roles for TFEB in the immune response and inflammation. Autophagy 14:181–189. <a href="https://doi.org/10.1080/15548627.2017.1313943" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2017.1313943</a>
Brauchli YB, Jick SS, Curtin F et al (2008) Association between beta-blockers, other antihypertensive drugs and psoriasis: Population-based case-control study. Br J Dermatol 158: 1299–1307. <a href="https://doi.org/10.1111/j.1365-2133.2008.08563.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2133.2008.08563.x</a>
Buerger C (2018) Epidermal mTORC1 signaling contributes to the pathogenesis of psoriasis and could serve as a therapeutic target. Front Immunol 9:2786. <a href="https://doi.org/10.3389/fimmu.2018.02786" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2018.02786</a>
Bugaut H, Aractingi S (2021) Major role of the IL17/23 axis in psoriasis supports the development of new targeted therapies. Front Immunol 12:621956. <a href="https://doi.org/10.3389/fimmu.2021.621956" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2021.621956</a>
Carroll B, Dunlop EA (2017) The lysosome: A crucial hub for AMPK and mTORC1 signalling. Biochem J 474:1453–1466. <a href="https://doi.org/10.1042/BCJ20160780" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/BCJ20160780</a>
Chiang CC, Cheng WJ, Korinek M et al (2019) Neutrophils in psoriasis. Front Immunol 10:2376. <a href="https://doi.org/10.3389/fimmu.2019.02376" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2019.02376</a>
Chung Y, Chang SH, Martinez GJ et al (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587. <a href="https://doi.org/10.1016/j.immuni.2009.02.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.immuni.2009.02.007</a>
Cuervo AM, Bergamini E, Brunk UT et al (2005) Autophagy and aging: The importance of maintaining “clean” cells. Autophagy 1:131–240. <a href="https://doi.org/10.4161/auto.1.3.2017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4161/auto.1.3.2017</a>
Cullen PJ, Steinberg F (2018) To degrade or not to degrade: Mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 19:679–696. <a href="https://doi.org/10.1038/s41580-018-0053-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41580-018-0053-7</a>
Dai Y, Hu S (2015) Recent insights into the role of autophagy in the pathogenesis of rheumatoid arthritis. Rheumatology 55: 403–410. <a href="https://doi.org/10.1093/rheumatology/kev337" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/rheumatology/kev337</a>
Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L et al (2017) Neutrophil extracellular traps and its implications in inflammation: An overview. Front Immunol 8:81. <a href="https://doi.org/10.3389/fimmu.2017.00081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2017.00081</a>
Delgoffe GM, Kole TP, Zheng Y et al (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844. <a href="https://doi.org/10.1016/j.immuni.2009.04.014" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.immuni.2009.04.014</a>
Delgoffe GM, Pollizzi KN, Waickman AT et al (2011) The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12:295–303. <a href="https://doi.org/10.1038/ni.2005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ni.2005</a>
Dengjel J, Schoor O, Fischer R et al (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 102:7922–7927. <a href="https://doi.org/10.1073/pnas.0501190102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.0501190102</a>
Dombrowski Y, Peric M, Koglin S et al (2011) Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med 3:82ra38. <a href="https://doi.org/10.1126/scitranslmed.3002001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/scitranslmed.3002001</a>
Douroudis K, Kingo K, Traks T et al (2012) Polymorphisms in the ATG16L1 gene are associated with psoriasis vulgaris. Acta Derm Venereol 92:85–87. <a href="https://doi.org/10.2340/00015555-1183" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2340/00015555-1183</a>
Dowling MR, Kan A, Heinzel S et al (2018) Regulatory T cells suppress effector T cell proliferation by limiting division destiny. Front Immunol 9:2461. <a href="https://doi.org/10.3389/fimmu.2018.02461" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2018.02461</a>
Drake KR, Kang M, Kenworthy AK (2010) Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP-LC3. PLoS One 5:e9806. <a href="https://doi.org/10.1371/journal.pone.0009806" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0009806</a>
Dunphy SE, Sweeney CM, Kelly G et al (2017) Natural killer cells from psoriasis vulgaris patients have reduced levels of cytotoxicity associated degranulation and cytokine production. Clin Immunol 177:43–49. <a href="https://doi.org/10.1016/j.clim.2015.10.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clim.2015.10.004</a>
Farag AGA, Hammam MA, Al-Sharaky DR et al (2019) Leucine-rich glioma inactivated 3: A novel keratinocyte-derived melanogenic cytokine in vitiligo patients. An Bras Dermatol 94:434–441. <a href="https://doi.org/10.1590/abd1806-4841.20198250" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1590/abd1806-4841.20198250</a>
Feng L, Song P, Xu F et al (2019) cis-Khellactone inhibited the proinflammatory macrophages via promoting autophagy to ameliorate imiquimod-induced psoriasis. J Invest Dermatol 139:1946–1956.e3. <a href="https://doi.org/10.1016/j.jid.2019.02.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2019.02.021</a>
Feske S, Okamura H, Hogan PG et al (2003) Ca<sup>2+</sup>/calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311:1117–1132. <a href="https://doi.org/10.1016/j.bbrc.2003.09.174" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbrc.2003.09.174</a>
Fimia GM, Piacentini M (2010) Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 67:1581–1588. <a href="https://doi.org/10.1007/s00018-010-0284-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00018-010-0284-z</a>
Fuentes-Duculan J, Suárez-Farĩas M, Zaba LC et al (2010) A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol 130:2412–2422. <a href="https://doi.org/10.1038/jid.2010.165" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/jid.2010.165</a>
Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541. <a href="https://doi.org/10.1038/s41418-017-0012-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41418-017-0012-4</a>
Ge W, Li D, Gao Y et al (2015) The roles of lysosomes in inflammation and autoimmune diseases. Int Rev Immunol 34:415–431. <a href="https://doi.org/10.3109/08830185.2014.936587" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3109/08830185.2014.936587</a>
Ge Y, Huang M, Yao YM (2018) Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev 43:38–46. <a href="https://doi.org/10.1016/j.cytogfr.2018.07.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cytogfr.2018.07.001</a>
Gebhardt T, Wakim LM, Eidsmo L et al (2009) Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol 10:524–530. <a href="https://doi.org/10.1038/ni.1718" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ni.1718</a>
Gȩgotek A, Domingues P, Skrzydlewska E (2020) Natural exogenous antioxidant defense against changes in human skin fibroblast proteome disturbed by UVA radiation. Oxid Med Cell Longev 2020:3216415. <a href="https://doi.org/10.1155/2020/3216415" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2020/3216415</a>
Germic N, Frangez Z, Yousefi S et al (2019) Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation. Cell Death Differ 26:715–727. <a href="https://doi.org/10.1038/s41418-019-0297-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41418-019-0297-6</a>
Ghoreschi K, Balato A, Enerbäck C et al (2021) Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 397: 754–766. <a href="https://doi.org/10.1016/S0140-6736(21)00184-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0140-6736(21)00184-7</a>
Ghoreschi K, Weigert C, Röcken M (2007) Immunopathogenesis and role of T cells in psoriasis. Clin Dermatol 25:574–580. <a href="https://doi.org/10.1016/j.clindermatol.2007.08.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clindermatol.2007.08.012</a>
Glennon-Alty L, Hackett AP, Chapman EA et al (2018) Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 125:25–35. <a href="https://doi.org/10.1016/j.freeradbiomed.2018.03.049" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.freeradbiomed.2018.03.049</a>
Gliński W, Barszcz D, Janczura E et al (1984) Neutral proteinases and other neutrophil enzymes in psoriasis, and their relation to disease activity. Br J Dermatol 111:147–154. <a href="https://doi.org/10.1111/j.1365-2133.1984.tb04037.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2133.1984.tb04037.x</a>
Goldminz AM, Au SC, Kim N et al (2013) NF-κB: An essential transcription factor in psoriasis. J Dermatol Sci 69:89–94. <a href="https://doi.org/10.1016/j.jdermsci.2012.11.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jdermsci.2012.11.002</a>
Gubán B, Vas K, Balog Z et al (2016) Abnormal regulation of fibronectin production by fibroblasts in psoriasis. Br J Dermatol 174:533–541. <a href="https://doi.org/10.1111/bjd.14219" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/bjd.14219</a>
Gunes R, Uysal P, Yalçin B et al (2022) Evaluation of serum progranulin levels in patients with psoriasis: A case-control study. Turkish J Dermatol 16:52. <a href="https://doi.org/10.4103/tjd.tjd_67_21" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4103/tjd.tjd_67_21</a>
Guo J, Tu J, Hu Y et al (2019) Cathepsin G cleaves and activates IL-36γ and promotes the inflammation of psoriasis. Drug Des Devel Ther 13:581–588. <a href="https://doi.org/10.2147/DDDT.S194765" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/DDDT.S194765</a>
Harris J, De Haro SA, Master SS et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular mycobacterium tuberculosis. Immunity 27:505–517. <a href="https://doi.org/10.1016/j.immuni.2007.07.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.immuni.2007.07.022</a>
Harris J, Hartman M, Roche C et al (2011) Autophagy controls IL-1β secretion by targeting Pro-IL-1β for degradation. J Biol Chem 286:9587–9597. <a href="https://doi.org/10.1074/jbc.M110.202911" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1074/jbc.M110.202911</a>
Harris J, Lang T, Thomas JPW et al (2017) Autophagy and inflammasomes. Mol Immunol 86:10–15. <a href="https://doi.org/10.1016/j.molimm.2017.02.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.molimm.2017.02.013</a>
Harris KM, Fasano A, Mann DL (2008) Cutting Edge: IL-1 controls the IL-23 response induced by gliadin, the etiologic agent in celiac disease. J Immunol 181:4457–4460. <a href="https://doi.org/10.4049/jimmunol.181.7.4457" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.181.7.4457</a>
Hayama Y, Kimura T, Takeda Y et al (2018) Lysosomal protein lamtor1 controls innate immune responses via nuclear translocation of transcription factor EB. J Immunol 200:3790–3800. <a href="https://doi.org/10.4049/jimmunol.1701283" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1701283</a>
Hayashi M, Yanaba K, Umezawa Y et al (2016) IL-10-producing regulatory B cells are decreased in patients with psoriasis. J Dermatol Sci 81:93–100. <a href="https://doi.org/10.1016/j.jdermsci.2015.11.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jdermsci.2015.11.003</a>
He H, Dang Y, Dai F et al (2003) Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278:29278–29287. <a href="https://doi.org/10.1074/jbc.M303800200" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1074/jbc.M303800200</a>
Henry CM, Sullivan GP, Clancy DM et al (2016) Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep 14:708–722. <a href="https://doi.org/10.1016/j.celrep.2015.12.072" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.celrep.2015.12.072</a>
Hirai T, Kanda T, Sato K et al (2013) Cathepsin K is involved in development of psoriasis-like skin lesions through TLR-dependent Th17 activation. J Immunol 190:4805–4811. <a href="https://doi.org/10.4049/jimmunol.1200901" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1200901</a>
Hu SCS, Yu HS, Yen FL et al (2016) Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Sci Rep 6:31119. <a href="https://doi.org/10.1038/srep31119" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/srep31119</a>
Huang K, Chen A, Zhang X et al (2015) Progranulin is preferentially expressed in patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation. Immunology 145:279–287. <a href="https://doi.org/10.1111/imm.12446" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/imm.12446</a>
Hubbard VM, Valdor R, Patel B et al (2010) Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol 185:7349–7357. <a href="https://doi.org/10.4049/jimmunol.1000576" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1000576</a>
Hunger RE, Sieling PA, Ochoa MT et al (2004) Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 113:701–708. <a href="https://doi.org/10.1172/JCI200419655" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1172/JCI200419655</a>
Iula L, Keitelman IA, Sabbione F et al (2018) Autophagy mediates interleukin-1β secretion in human neutrophils. Front Immunol 9:269. <a href="https://doi.org/10.3389/fimmu.2018.00269" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2018.00269</a>
Jacquel A, Obba S, Boyer L et al (2012) Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119:4527–4531. <a href="https://doi.org/10.1182/blood-2011-11-392167" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1182/blood-2011-11-392167</a>
Jang A, Sharp R, Wang JM et al (2021) Dependence on autophagy for autoreactive memory B cells in the development of pristane-induced lupus. Front Immunol 12:701066. <a href="https://doi.org/10.3389/fimmu.2021.701066" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2021.701066</a>
Jariwala SP (2007) The role of dendritic cells in the immunopathogenesis of psoriasis. Arch Dermatol Res 299:359–366. <a href="https://doi.org/10.1007/s00403-007-0775-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00403-007-0775-4</a>
Jeger JL (2020) Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep 47:9801–9810. <a href="https://doi.org/10.1007/s11033-020-05993-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11033-020-05993-4</a>
Jeong D, Qomaladewi NP, Lee J et al (2020) The role of autophagy in skin fibroblasts, keratinocytes, melanocytes, and epidermal stem cells. J Invest Dermatol 140:1691–1697. <a href="https://doi.org/10.1016/j.jid.2019.11.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2019.11.023</a>
Jia W, He MX, McLeod IX et al (2015) Autophagy regulates T lymphocyte proliferation through selective degradation of the cell-cycle inhibitor CDKN1B/p27Kip1. Autophagy 11:2335–2345. <a href="https://doi.org/10.1080/15548627.2015.1110666" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2015.1110666</a>
Jia W, He YW (2011) Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 186:5313–5322. <a href="https://doi.org/10.4049/jimmunol.1002404" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1002404</a>
Jia W, Pua HH, Li QJ et al (2011) Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 186:1564–1574. <a href="https://doi.org/10.4049/jimmunol.1001822" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1001822</a>
Jiang B, Cui Y, Ma X et al (2022) Crosstalk between autophagy inhibitor and salidroside-induced apoptosis: A novel strategy for autophagy-based treatment of hepatocellular cancer. SSRN Electronic J. <a href="https://doi.org/10.2139/ssrn.4255541" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2139/ssrn.4255541</a>
Johansen C, Kragballe K, Westergaard M et al (2005) The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br J Dermatol 152:37–42. <a href="https://doi.org/10.1111/j.1365-2133.2004.06304.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2133.2004.06304.x</a>
Johansen C, Moeller K, Kragballe K et al (2007) The activity of caspase-1 is increased in lesional psoriatic epidermis. J Invest Dermatol 127:2857–2864. <a href="https://doi.org/10.1038/sj.jid.5700922" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/sj.jid.5700922</a>
Jonchère B, Bélanger A, Guette C et al (2013) STAT3 as a new autophagy regulator. JAKSTAT 2:e24353. <a href="https://doi.org/10.4161/jkst.24353" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4161/jkst.24353</a>
Kabat AM, Harrison OJ, Riffelmacher T et al (2016) The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife 5:e12444. <a href="https://doi.org/10.7554/eLife.12444" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7554/eLife.12444</a>
Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. <a href="https://doi.org/10.1093/emboj/19.21.5720" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/emboj/19.21.5720</a>
Kahlert K, Grän F, Muhammad K et al (2019) Aberrant B-cell subsets and immunoglobulin levels in patients with moderate-to-severe psoriasis. Acta Derm Venereol 99:226–227. <a href="https://doi.org/10.2340/00015555-3069" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2340/00015555-3069</a>
Kamata M, Tada Y (2022) Dendritic cells and macrophages in the pathogenesis of psoriasis. Front Immunol 13:941071. <a href="https://doi.org/10.3389/fimmu.2022.941071" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2022.941071</a>
Kasai M, Tanida I, Ueno T et al (2009) Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J Immunol 183:7278–7285. <a href="https://doi.org/10.4049/jimmunol.0804087" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.0804087</a>
Kim HR, Kang SY, Kim HO et al (2020) Role of aryl hydrocarbon receptor activation and autophagy in psoriasis-related inflammation. Int J Mol Sci 21:2195. <a href="https://doi.org/10.3390/ijms21062195" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms21062195</a>
Kimura T, Hayama Y, Okuzaki D et al (2022) The Ragulator complex serves as a substrate-specific mTORC1 scaffold in regulating the nuclear translocation of transcription factor EB. J Biol Chem 298:101744. <a href="https://doi.org/10.1016/j.jbc.2022.101744" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jbc.2022.101744</a>
Kiyono K, Suzuki HI, Matsuyama H et al (2009) Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res 69:8844–8852. <a href="https://doi.org/10.1158/0008-5472.CAN-08-4401" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/0008-5472.CAN-08-4401</a>
Klapan K, Frangež Ž, Markov N et al (2021) Evidence for lysosomal dysfunction within the epidermis in psoriasis and atopic dermatitis. J Invest Dermatol 141:2838–2848.e4. <a href="https://doi.org/10.1016/j.jid.2021.05.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2021.05.016</a>
Klapan K, Simon D, Karaulov A et al (2022) Autophagy and skin diseases. Front Pharmacol 13:844756. <a href="https://doi.org/10.3389/fphar.2022.844756" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fphar.2022.844756</a>
Koga T, Hedrich CM, Mizui M et al (2014) CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J Clin Invest 124:2234–2245. <a href="https://doi.org/10.1172/JCI73411" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1172/JCI73411</a>
Kopf H, de la Rosa GM, Howard OMZ et al (2007) Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol 7:1819–1824. <a href="https://doi.org/10.1016/j.intimp.2007.08.027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.intimp.2007.08.027</a>
Kovacs JR, Li C, Yang Q et al (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 19:144–152. <a href="https://doi.org/10.1038/cdd.2011.78" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/cdd.2011.78</a>
Kunz M, Simon JC, Saalbach A (2019) Psoriasis: Obesity and fatty acids. Front Immunol 10:1807. <a href="https://doi.org/10.3389/fimmu.2019.01807" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2019.01807</a>
Lan YJ, Sam NB, Cheng MH et al (2021) Progranulin as a potential therapeutic target in immune-mediated diseases. J Inflamm Res 14:6543–6556. <a href="https://doi.org/10.2147/JIR.S339254" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/JIR.S339254</a>
Lee HM, Shin DM, Yuk JM et al (2011) Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol 186:1248–1258. <a href="https://doi.org/10.4049/jimmunol.1001954" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1001954</a>
Lee SJ, Desplats P, Sigurdson C et al (2010) Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 6:702–706. <a href="https://doi.org/10.1038/nrneurol.2010.145" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrneurol.2010.145</a>
Li C, Capan E, Zhao Y et al (2006) Autophagy is induced in CD4<sup>+</sup> T cells and important for the growth factor-withdrawal cell death. J Immunol 177:5163–5168. <a href="https://doi.org/10.4049/jimmunol.177.8.5163" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.177.8.5163</a>
Li L, Chen X, Gu H (2016) The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 7:50682–50697. <a href="https://doi.org/10.18632/oncotarget.9330" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.18632/oncotarget.9330</a>
Li L, Friedrichsen HJ, Andrews S et al (2018) A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nat Commun 9:2685. <a href="https://doi.org/10.1038/s41467-018-04849-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41467-018-04849-7</a>
Li L, Lu H, Zhang Y et al (2022) Effect of azelaic acid on psoriasis progression investigated based on phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Clin Cosmet Investig Dermatol 15:2523–2534. <a href="https://doi.org/10.2147/CCID.S389760" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/CCID.S389760</a>
Liang X, de Vera ME, Buchser WJ et al (2012) Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res 72:2791–2801. <a href="https://doi.org/10.1158/0008-5472.CAN-12-0320" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/0008-5472.CAN-12-0320</a>
Liu CJ, Bosch X (2012) Progranulin: A growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther 133:124–132. <a href="https://doi.org/10.1016/j.pharmthera.2011.10.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.pharmthera.2011.10.003</a>
Liu K, Zhao E, Ilyas G et al (2015) Impaired macrophage autophagy increases the immune response in obese mice by promoting pro-inflammatory macrophage polarization. Autophagy 11:271–284. <a href="https://doi.org/10.1080/15548627.2015.1009787" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2015.1009787</a>
Loi M, Müller A, Steinbach K et al (2016) Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8<sup>+</sup> T cell responses. Cell Rep 15:1076–1087. <a href="https://doi.org/10.1016/j.celrep.2016.04.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.celrep.2016.04.002</a>
Lu J, Ding Y, Yi X et al (2016) CD19<sup>+</sup> B cell subsets in the peripheral blood and skin lesions of psoriasis patients and their correlations with disease severity. Braz J Med Biol Res 49:e5374. <a href="https://doi.org/10.1590/1414-431X20165374" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1590/1414-431X20165374</a>
Lynde CW, Poulin Y, Vender R et al (2014) Interleukin 17A: Toward a new understanding of psoriasis pathogenesis. J Am Acad Dermatol 71:141–150. <a href="https://doi.org/10.1016/j.jaad.2013.12.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jaad.2013.12.036</a>
Mahil SK, Twelves S, Farkas K et al (2016) AP1S3 IL-36 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating production. J Invest Dermatol 136: 2251–2259. <a href="https://doi.org/10.1016/j.jid.2016.06.618" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2016.06.618</a>
Mariño G, Niso-Santano M, Baehrecke EH et al (2014) Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. <a href="https://doi.org/10.1038/nrm3735" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrm3735</a>
Matsuzawa Y, Oshima S, Takahara M et al (2015) TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 11:1052–1062. <a href="https://doi.org/10.1080/15548627.2015.1055439" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2015.1055439</a>
Mavropoulos A, Varna A, Zafiriou E et al (2017) IL-10 producing Bregs are impaired in psoriatic arthritis and psoriasis and inversely correlate with IL-17- and IFNγ-producing T cells. Clin Immunol 184:33–41. <a href="https://doi.org/10.1016/j.clim.2017.04.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.clim.2017.04.010</a>
Medina DL, di Paola S, Peluso I et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299. <a href="https://doi.org/10.1038/ncb3114" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ncb3114</a>
Mercurio L, Albanesi C, Madonna S (2021) Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders. Front Med 8:665647. <a href="https://doi.org/10.3389/fmed.2021.665647" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmed.2021.665647</a>
Merkley SD, Chock CJ, Yang XO et al (2018) Modulating T cell responses via autophagy: The intrinsic influence controlling the function of both antigen-presenting cells and T cells. Front Immunol 9:2914. <a href="https://doi.org/10.3389/fimmu.2018.02914" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2018.02914</a>
Mintern JD, Macri C, Chin WJ et al (2015) Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy 11:906–917. <a href="https://doi.org/10.1080/15548627.2015.1045178" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2015.1045178</a>
Mocholi E, Dowling SD, Botbol Y et al (2018) Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy. Cell Rep 24:1136–1150. <a href="https://doi.org/10.1016/j.celrep.2018.06.065" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.celrep.2018.06.065</a>
Monteleon CL, Agnihotri T, Dahal A et al (2018) Lysosomes support the degradation, signaling, and mitochondrial metabolism necessary for human epidermal differentiation. J Invest Dermatol 138:1945–1954. <a href="https://doi.org/10.1016/j.jid.2018.02.035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2018.02.035</a>
Moos S, Mohebiany AN, Waisman A et al (2019) Imiquimod-induced psoriasis in mice depends on the IL-17 signaling of keratinocytes. J Invest Dermatol 139:1110–1117. <a href="https://doi.org/10.1016/j.jid.2019.01.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jid.2019.01.006</a>
Murera D, Arbogast F, Arnold J et al (2018) CD4 T cell autophagy is integral to memory maintenance. Sci Rep 8:5951. <a href="https://doi.org/10.1038/s41598-018-23993-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-018-23993-0</a>
Nabar NR, Heijjer CN, Shi CS et al (2022) LRRK2 is required for CD38-mediated NAADP-Ca<sup>2+</sup> signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy 18:204–222. <a href="https://doi.org/10.1080/15548627.2021.1954779" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2021.1954779</a>
Nada EA, Muhammad EMS, Ahmed SFM et al (2020) Assessment of the effect of metabolic syndrome on the autophagy marker lc3 in psoriasis vulgaris patients: A cross-sectional study. Clin Cosmet Investig Dermatol 13:1005–1013. <a href="https://doi.org/10.2147/CCID.S284300" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/CCID.S284300</a>
Napoletano F, Baron O, Vandenabeele P et al (2019) Intersections between regulated cell death and autophagy. Trends Cell Biol 29:323–338. <a href="https://doi.org/10.1016/j.tcb.2018.12.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tcb.2018.12.007</a>
Napolitano G, di Malta C, Ballabio A (2022) Non-canonical mTORC1 signaling at the lysosome. Trends Cell Biol 32:920–931 <a href="https://doi.org/10.1016/j.tcb.2022.04.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tcb.2022.04.012</a>
Nguyen CTH, Kambe N, Yamazaki F et al (2018) Up-regulated expression of CD86 on circulating intermediate monocytes correlated with disease severity in psoriasis. J Dermatol Sci 90: 135–143. <a href="https://doi.org/10.1016/j.jdermsci.2018.01.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jdermsci.2018.01.005</a>
Noor AAM, Azlan M, Redzwan NM (2022) Orchestrated cytokines mediated by biologics in psoriasis and its mechanisms of action. Biomedicines 10:498. <a href="https://doi.org/10.3390/biomedicines10020498" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/biomedicines10020498</a>
Ottaviani C, Nasorri F, Bedini C et al (2006) CD56brightCD16-NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol 36: 118–128. <a href="https://doi.org/10.1002/eji.200535243" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/eji.200535243</a>
Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–2445. <a href="https://doi.org/10.1074/jbc.M702824200" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1074/jbc.M702824200</a>
Parekh VV, Wu L, Boyd KL et al (2013) Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a t cell-specific deletion of Vps34. J Immunol 190:5086–5101. <a href="https://doi.org/10.4049/jimmunol.1202071" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1202071</a>
Park JM, Lee DH, Kim DH (2023) Redefining the role of AMPK in autophagy and the energy stress response. Nat Commun 14:2994. <a href="https://doi.org/10.1038/s41467-023-38401-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41467-023-38401-z</a>
Pastore N, Brady OA, Diab HI et al (2016) TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12:1240–1258. <a href="https://doi.org/10.1080/15548627.2016.1179405" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2016.1179405</a>
Patel AB, Tsilioni I, Weng Z et al (2018) TNF stimulates IL-6, CXCL8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Exp Dermatol 27: 135–143. <a href="https://doi.org/10.1111/exd.13461" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/exd.13461</a>
Paushter DH, Du H, Feng T et al (2018) The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol 136:1–17. <a href="https://doi.org/10.1007/s00401-018-1861-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00401-018-1861-8</a>
Peeters JGC, de Graeff N, Lotz M et al (2017) Increased autophagy contributes to the inflammatory phenotype of juvenile idiopathic arthritis synovial fluid T cells. Rheumatology 56:1694–1699. <a href="https://doi.org/10.1093/rheumatology/kex227" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/rheumatology/kex227</a>
Pinegin B, Vorobjeva N, Pinegin V (2015) Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev 14:633–640. <a href="https://doi.org/10.1016/j.autrev.2015.03.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.autrev.2015.03.002</a>
Pivarcsi A, Kemény L, Dobozy A (2004) Innate immune functions of the keratinocytes: A review. Acta Microbiol Immunol Hung 51:303–310. <a href="https://doi.org/10.1556/AMicr.51.2004.3.8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1556/AMicr.51.2004.3.8</a>
Pua HH, Dzhagalov I, Chuck M et al (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31. <a href="https://doi.org/10.1084/jem.20061303" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1084/jem.20061303</a>
Qiu X, Zheng L, Liu X et al (2021) ULK1 inhibition as a targeted therapeutic strategy for psoriasis by regulating keratinocytes and their crosstalk with neutrophils. Front Immunol 12:714274. <a href="https://doi.org/10.3389/fimmu.2021.714274" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2021.714274</a>
Raza IGA, Clarke AJ (2021) B cell metabolism and autophagy in autoimmunity. Front Immunol 12:681105. <a href="https://doi.org/10.3389/fimmu.2021.681105" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2021.681105</a>
Said A, Bock S, Lajqi T et al (2014) Chloroquine promotes IL-17 production by CD4<sup>+</sup> T cells via p38-dependent IL-23 release by monocyte-derived Langerhans-like cells. J Immunol 193: 6135–6143. <a href="https://doi.org/10.4049/jimmunol.1303276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4049/jimmunol.1303276</a>
Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances. Nature 456:264–268. <a href="https://doi.org/10.1038/nature07383" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nature07383</a>
Salazar G, Cullen A, Huang J et al (2020) SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence. Autophagy 16:1092–1110. <a href="https://doi.org/10.1080/15548627.2019.1659612" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2019.1659612</a>
Salwa A, Ferraresi A, Secomandi E et al (2023) High BECN1 expression negatively correlates with BCL2 expression and predicts better prognosis in diffuse large B-cell lymphoma: Role of autophagy. Cells 12:1924. <a href="https://doi.org/10.3390/cells12151924" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/cells12151924</a>
Sánchez-Martín P, Saito T, Komatsu M (2019) p62/SQSTM1: ‘Jack of all trades’ in health and cancer. FEBS J 286:8–23. <a href="https://doi.org/10.1111/febs.14712" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/febs.14712</a>
Sandoval H, Kodali S, Wang J (2018) Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion 41:58–65. <a href="https://doi.org/10.1016/j.mito.2017.11.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mito.2017.11.005</a>
Schmid D, Pypaert M, Münz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92. <a href="https://doi.org/10.1016/j.immuni.2006.10.018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.immuni.2006.10.018</a>
Schober R, Waldherr L, Schmidt T et al (2019) STIM1 and Orai1 regulate Ca<sup>2+</sup> microdomains for activation of transcription. Biochim Biophys Acta Mol Cell Res 1866:1079–1091. <a href="https://doi.org/10.1016/j.bbamcr.2018.11.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbamcr.2018.11.001</a>
Schönefuß A, Wendt W, Schattling B et al (2010) Upregulation of cathepsin S in psoriatic keratinocytes. Exp Dermatol 19:e80–88. <a href="https://doi.org/10.1111/j.1600-0625.2009.00990.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1600-0625.2009.00990.x</a>
Scotto Rosato A, Montefusco S, Soldati C et al (2019) TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat Commun 10:5630. <a href="https://doi.org/10.1038/s41467-019-13572-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41467-019-13572-w</a>
Serrano-Puebla A, Boya P (2018) Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans 46:207–215. <a href="https://doi.org/10.1042/BST20170130" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/BST20170130</a>
Settembre C, de Cegli R, Mansueto G et al (2013) TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 15:647–658. <a href="https://doi.org/10.1038/ncb2718" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ncb2718</a>
Settembre C, di Malta C, Polito VA et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. <a href="https://doi.org/10.1126/science.1204592" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/science.1204592</a>
Sheir HS, Badr EA, Hodeib AA et al (2022) Progranulin/tumor necrosis factor-alpha ratio in psoriasis vulgaris. J Adv Med Med Res 34:93–99. <a href="https://doi.org/10.9734/jammr/2022/v34i1831433" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.9734/jammr/2022/v34i1831433</a>
Shen P, Fillatreau S (2015) Suppressive functions of B cells in infectious diseases. Int Immunol 27:513–519. <a href="https://doi.org/10.1093/intimm/dxv037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/intimm/dxv037</a>
Shi CS, Kehrl JH (2010) TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal 3:ra42. <a href="https://doi.org/10.1126/scisignal.2000751" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/scisignal.2000751</a>
Sil P, Wong SW, Martinez J (2018) More than skin deep: Autophagy is vital for skin barrier function. Front Immunol 9:1376. <a href="https://doi.org/10.3389/fimmu.2018.01376" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2018.01376</a>
Slade L, Pulinilkunnil T (2017) The MiTF/TFE family of transcription factors: Master regulators of organelle signaling, metabolism, and stress adaptation. Mol Cancer Res 15:1637–1643. <a href="https://doi.org/10.1158/1541-7786.MCR-17-0320" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/1541-7786.MCR-17-0320</a>
Song R, Li J, Zhang J et al (2017) Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif. Biochimie 142:158–167. <a href="https://doi.org/10.1016/j.biochi.2017.09.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biochi.2017.09.002</a>
Stockinger B, Veldhoen M, Martin B (2007) Th17 T cells: Linking innate and adaptive immunity. Semin Immunol 19:353–361. <a href="https://doi.org/10.1016/j.smim.2007.10.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.smim.2007.10.008</a>
Sun W, Zheng Y, Lu Z et al (2014) Overexpression of S100A7 protects LPS-induced mitochondrial dysfunction and stimulates IL-6 and IL-8 in HaCaT cells. PLoS One 9:e92927. <a href="https://doi.org/10.1371/journal.pone.0092927" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0092927</a>
Tang W, Lu Y, Tian QY et al (2011) The growth factor progranulin binds to tnf receptors and is therapeutic against inflammatory arthritis in mice. Science 332:478–484. <a href="https://doi.org/10.1126/science.1199214" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/science.1199214</a>
Tian R, Li Y, Yao X (2016) PGRN suppresses inflammation and promotes autophagy in keratinocytes through the Wnt/β-catenin signaling pathway. Inflammation 39:1387–1394. <a href="https://doi.org/10.1007/s10753-016-0370-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10753-016-0370-y</a>
Toruniowa B, Jablońska S (1988) Mast cells in the initial stages of psoriasis. Arch Dermatol Res 280:189–193. <a href="https://doi.org/10.1007/BF00513956" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/BF00513956</a>
Ushio H, Ueno T, Kojima Y et al (2011) Crucial role for autophagy in degranulation of mast cells. J Allergy Clin Immunol 127: 1267–1276.e6. <a href="https://doi.org/10.1016/j.jaci.2010.12.1078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jaci.2010.12.1078</a>
Valdez C, Wong YC, Schwake M et al (2017) Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 26: 4861–4872. <a href="https://doi.org/10.1093/hmg/ddx364" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/hmg/ddx364</a>
Valladeau J, Ravel O, Dezutter-Dambuyant C et al (2000) Langerin, a novel C-type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12:71–81. <a href="https://doi.org/10.1016/S1074-7613(00)80160-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1074-7613(00)80160-0</a>
Varshney P, Saini N (2018) PI3K/AKT/mTOR activation and autophagy inhibition plays a key role in increased cholesterol during IL-17A mediated inflammatory response in psoriasis. Biochim Biophys Acta Mol Basis Dis 1864:1795–1803. <a href="https://doi.org/10.1016/j.bbadis.2018.02.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bbadis.2018.02.003</a>
Vega-Rubin-de-Celis S, Peña-Llopis S, Konda M et al (2017) Multistep regulation of TFEB by MTORC1. Autophagy 13: 464–472. <a href="https://doi.org/10.1080/15548627.2016.1271514" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2016.1271514</a>
Villanova F, Flutter B, Tosi I et al (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44<sup>+</sup> ILC3 in psoriasis. J Invest Dermatol 134:984–991. <a href="https://doi.org/10.1038/jid.2013.477" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/jid.2013.477</a>
Vomero M, Manganelli V, Barbati C et al (2019) Reduction of autophagy and increase in apoptosis correlates with a favorable clinical outcome in patients with rheumatoid arthritis treated with anti-TNF drugs. Arthritis Res Ther 21:39. <a href="https://doi.org/10.1186/s13075-019-1818-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13075-019-1818-x</a>
Wang F, Muller S (2015) Manipulating autophagic processes in autoimmune diseases: A special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol 6:252. <a href="https://doi.org/10.3389/fimmu.2015.00252" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2015.00252</a>
Wang J, Kaplan N, Wang S et al (2020) Autophagy plays a positive role in induction of epidermal proliferation. FASEB J 34: 10657–10667. <a href="https://doi.org/10.1096/fj.202000770RR" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1096/fj.202000770RR</a>
Wang S, Xia P, Huang G et al (2016) FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun 7:11023. <a href="https://doi.org/10.1038/ncomms11023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ncomms11023</a>
Wang WM, Jin HZ (2020) Role of neutrophils in psoriasis. J Immunol Res 2020:3709749. <a href="https://doi.org/10.1155/2020/3709749" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2020/3709749</a>
Wang Y, Edelmayer R, Wetter J et al (2019a) Monocytes/macrophages play a pathogenic role in IL-23 mediated psoriasis-like skin inflammation. Sci Rep 9:5310. <a href="https://doi.org/10.1038/s41598-019-41655-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-019-41655-7</a>
Wang Y, Li Y, Wei F et al (2017) Optical imaging paves the way for autophagy research. Trends Biotechnol 35:1181–1193. <a href="https://doi.org/10.1016/j.tibtech.2017.08.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tibtech.2017.08.006</a>
Wang Y, Wen X, Hao D et al (2019b) Insights into autophagy machinery in cells related to skin diseases and strategies for therapeutic modulation. Biomed Pharmacother 113:108775. <a href="https://doi.org/10.1016/j.biopha.2019.108775" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biopha.2019.108775</a>
Wang Z, Zhou H, Zheng H et al (2021) Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation. Autophagy 17:529–552. <a href="https://doi.org/10.1080/15548627.2020.1725381" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15548627.2020.1725381</a>
Ward NL, Umetsu DT (2014) A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. J Invest Dermatol 134:2305–2307. <a href="https://doi.org/10.1038/jid.2014.216" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/jid.2014.216</a>
Wei J, Long L, Yang K et al (2016) Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17:277–285. <a href="https://doi.org/10.1038/ni.3365" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/ni.3365</a>
Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870. <a href="https://doi.org/10.1152/physrev.2003.83.3.835" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1152/physrev.2003.83.3.835</a>
Willinger T, Flavell RA (2012) Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci U S A 109:8670–8675. <a href="https://doi.org/10.1073/pnas.1205305109" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.1205305109</a>
Wu X, Eisenman RN (2021) MYC and TFEB control DNA methylation and differentiation in AML. Cancer Discov 2:116–118. <a href="https://doi.org/10.1158/2643-3230.BCD-20-0230" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1158/2643-3230.BCD-20-0230</a>
Yadati T, Houben T, Bitorina A et al (2020) The ins and outs of cathepsins: Physiological function and role in disease management. Cells 9:1679. <a href="https://doi.org/10.3390/cells9071679" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/cells9071679</a>
Yin H, Wu H, Chen Y et al (2018) The therapeutic and pathogenic role of autophagy in autoimmune diseases. Front Immunol 9:1512. <a href="https://doi.org/10.3389/fimmu.2018.01512" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2018.01512</a>
Yin Q, Jian Y, Xu M et al (2020) CDK4/6 regulate lysosome biogenesis through TFEB/TFE3. J Cell Biol 219:e201911036. <a href="https://doi.org/10.1083/JCB.201911036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1083/JCB.201911036</a>
Yu XJ, Li CY, Dai HY et al (2007) Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp Mol Pathol 83:413–418. <a href="https://doi.org/10.1016/j.yexmp.2007.05.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.yexmp.2007.05.002</a>
Zhang M, Zhang X (2019) The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 311:83–91. <a href="https://doi.org/10.1007/s00403-018-1879-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00403-018-1879-8</a>
Zhang W, Bai J, Hang K et al (2022a) Role of lysosomal acidification dysfunction in mesenchymal stem cell senescence. Front Cell Dev Biol 10:817877. <a href="https://doi.org/10.3389/fcell.2022.817877" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fcell.2022.817877</a>
Zhang X, Li X, Wang Y et al (2022b) Abnormal lipid metabolism in epidermal Langerhans cells mediates psoriasis-like dermatitis. JCI Insight 7:e150223. <a href="https://doi.org/10.1172/jci.insight.150223" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1172/jci.insight.150223</a>
Zhang Y, Shi Y, Lin J et al (2021) Immune cell infiltration analysis demonstrates excessive mast cell activation in psoriasis. Front Immunol 12:773280. <a href="https://doi.org/10.3389/fimmu.2021.773280" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fimmu.2021.773280</a>
Zhou B, Liu J, Kang R et al (2020) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol 66:89–100. <a href="https://doi.org/10.1016/j.semcancer.2019.03.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.semcancer.2019.03.002</a>
Zhou L, Wang J, Hou H et al (2023) Autophagy inhibits inflammation via down-regulation of p38 MAPK/mTOR signaling cascade in endothelial cells. Clin Cosmet Investig Dermatol 16:659–669. <a href="https://doi.org/10.2147/CCID.S405068" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2147/CCID.S405068</a>
Zhou X, Chen Y, Cui L et al (2022) Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis 13:81. <a href="https://doi.org/10.1038/s41419-022-04523-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41419-022-04523-3</a>
Zhou X, Paushter DH, Feng T et al (2017) Regulation of cathepsin D activity by the FTLD protein progranulin. Acta Neuropathol 134:151–153. <a href="https://doi.org/10.1007/s00401-017-1719-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00401-017-1719-5</a>