Have a personal or library account? Click to login
Mathematical models for predicting the toxicity of micropollutant mixtures in water Cover

Mathematical models for predicting the toxicity of micropollutant mixtures in water

Open Access
|Sep 2025

References

  1. Matesun J, Petrik L, Musvoto E, Ayinde W, Ikumi D. Limitations of wastewater treatment plants in removing trace anthropogenic biomarkers and future directions: A review. Ecotoxicol Environ Saf 2024;281:116610. doi: 10.1016/j.ecoenv.2024.116610
  2. Tian D, Lin Z, Yu J, Yin D. Influence factors of multicomponent mixtures containing reactive chemicals and their joint effects. Chemosphere 2012;88:994–1000. doi:10.1016/j.chemosphere.2012.03.043
  3. European Commission (EC). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy [displayed 1 July 2025]. Available at https://eur-lex.europa.eu/eli/dir/2000/60/oj/eng
  4. Wolf JC, Segner HE. Hazards of current concentration-setting practices in environmental toxicology studies. Crit Rev Toxicol 2023;53:297–310. doi: 10.1080/10408444.2023.2229372
  5. Stevenson LM, Krattenmaker KE, Johnson E, Bowers AJ, Adeleye AS, McCauley E, Nisbet RM. Standardized toxicity testing may underestimate ecotoxicity: Environmentally relevant food rations increase the toxicity of silver nanoparticles to Daphnia. Environ Toxicol Chem 2017;36:3008–18. doi: 10.1002/etc.3869
  6. Wołowicz A, Munir HMS. Emerging organic micropollutants as serious environmental problem: A comprehensive review. Sci Total Environ 2025;958:177948. doi: 10.1016/j.scitotenv.2024.177948
  7. Fernandes J, Ramísio PJ, Puga H. A comprehensive review on various phases of wastewater technologies: Trends and future perspectives. Eng 2024;5:2633–61. doi: 10.3390/eng5040138
  8. Rout PR, Zhang TC, Bhunia P, Surampalli RY. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci Total Environ 2021;753:141990. doi: 10.1016/j.scitotenv.2020.141990
  9. Barcellos DDS, Procopiuck M, Bollmann HA. Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. Sci Total Environ 2022;809:151128. doi: 10.1016/j.scitotenv.2021.151128
  10. Swiacka K, Michnowska A, Maculewicz J, Caban M, Smolarz K. Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. Environ Pollut 2021;273:115891. doi: 10.1016/j.envpol.2020.115891
  11. Tröger R, Klöckner P, Ahrens L, Wiberg K. Micropollutants in drinking water from source to tap - Method development and application of a multiresidue screening method. Sci Total Environ 2018;627:1404–32. doi: 10.1016/j.scitotenv.2018.01.277
  12. Backhaus T. Commentary on the EU Commission’s proposal for amending the Water Framework Directive, the Groundwater Directive, and the Directive on Environmental Quality Standards. Environ Sci Eur 2023;35:22. doi: 10.1186/s12302-023-00726-3
  13. Undeman E. Diclofenac in the Baltic Sea – Sources, transport routes and trends. Helsinki: HELCOM; 2020. [displayed 13 August 2025]. Available at https://helcom.fi/wp-content/uploads/2020/06/Helcom_170_Diclofenac.pdf.
  14. Martin JM, Bertram MG, Blanchfield PJ, Brand JA, Brodin T, Brooks BW, Cerveny D, Lagisz M, Ligocki IY, Michelangeli M, Nakagawa S, Orford JT, Sundin J, Tan H, Wong BBM, McCallum ES. Evidence of the impacts of pharmaceuticals on aquatic animal behaviour: a systematic map protocol. Environ Evid 2021;10:26. doi: 10.1186/s13750-021-00241-z
  15. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021;10(10):1310. doi: 10.3390/pathogens10101310
  16. Godoy AA, de Oliveira AC, Silva JGM, de Jesus CC, Domingues AI, Arsénia Nogueira AJ, Kummrow F. Single and mixture toxicity of four pharmaceuticals of environmental concern to aquatic organisms, including a behavioral assessment. Chemosphere 2019;235:373–82. doi: 10.1016/j.chemosphere.2019.06.200
  17. Hernández-Tenorio R, González-Juárez E, Guzmán-Mar JL, Hinojosa-Reyes L, Hernández-Ramírez A. Review of occurrence of pharmaceuticals worldwide for estimating concentration ranges in aquatic environments at the end of the last decade. J Hazard Mater Adv 2022;8:100172. doi: 10.1016/j.hazadv.2022.100172
  18. Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi WA, Algarni TS, Almarri AH, Al-Mohaimeed AM. Pesticides in drinking water – A review. Int J Environ Res Public Health 2021;18(2):468. doi: 10.3390/ijerph18020468
  19. Kruć-Fijałkowska R, Dragon K, Drożdżyński D, Gorski J. Seasonal variation of pesticides in surface water and drinking water wells in the annual cycle in western Poland, and potential health risk assessment. Sci Rep 2022;12(1):3317. doi: 10.1038/s41598-022-07385-z
  20. Kodešová R, Fedorova G, Kodeš V, Kočárek M, Rieznyk O, Fér M, Švecová H, Klement A, Bořík A, Nikodem A, Grabic R. Assessment of potential mobility of selected micropollutants in agricultural soils of the Czech Republic using their sorption predicted from soil properties. Sci Total Environ 2023;865:161174. doi: 10.1016/j.scitotenv.2022.161174
  21. Wan NF, Fu L, Dainese M, Kiær LP, Hu YQ, Xin F, Goulson D, Woodcock BA, Vanbergen AJ, Spurgeon DJ, Shen S, Scherber C. Pesticides have negative effects on non-target organisms. Nat Commun 2025;16:1360. doi: 10.1038/s41467-025-56732-x
  22. European Commission (EC). Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast) [displayed 1 July 2025]. Available at https://eur-lex.europa.eu/eli/dir/2020/2184/oj/eng
  23. Soltanighias T, Umar A, Abdullahi M, Abdallah MAE, Orsini L. Combined toxicity of perfluoroalkyl substances and microplastics on the sentinel species Daphnia magna: Implications for freshwater ecosystems. Environ Pollut 2024;363:125133. doi: 10.1016/j.envpol.2024.125133
  24. Kurwadkar S, Dane J, Kanel SR, Nadagouda MN, Cawdrey RW, Ambade B, Struckhoff GC, Wilkin R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci Total Environ 2022;809:151003. doi: 10.1016/j.scitotenv.2021.151003
  25. Sharma BM, Bharat GK, Tayal S, Larssen T, Bečanova J, Karáskova P, Whitehead PG, Futter MN, Butterfield D, Nizzetto L. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environ Poll 2016;208:704–13. doi: 10.1016/j.envpol.2015.10.050
  26. Joudan S, Lundgren RJ. Taking the “F” out of forever chemicals-The right solvent mix breaks down perfluorinated organic acids. Science 2022;377:816–7. doi: 10.1126/science.add1813
  27. Wang Z, DeWitt JC, Higgins CP, Cousins IT. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ Sci Technol 2017;51:2508–18. doi: 10.1021/acs.est.6b04806
  28. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, Higgins CP, Sunderland EM. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Health 2016;3:344–50. doi: 10.1021/acs.estlett.6b00260
  29. Zhang M, Wang P, Lu Y, Lu X, Zhang A, Liu Z, Zhang Y, Khan K, Sarvajayakesavalu S. Bioaccumulation and human exposure of perfluoroalkyl acids (PFAAs) in vegetables from the largest vegetable production base of China. Environ Int 2020;135:105347. doi: 10.1016/j.envint.2019.105347
  30. Banyoi SM, Porseryd T, Larsson J, Grahn M, Dinnétz P. The effects of exposure to environmentally relevant PFAS concentrations for aquatic organisms at different consumer trophic levels: Systematic review and meta-analyses. Environ Pollut 2022;315:120422. doi: 10.1016/j.envpol.2022.120422
  31. Folt CL, Chen CY, Moore MV, Burnaford J. Synergism and antagonism among multiple stressors. Limnol Oceanogr 1999;44:864–77.
  32. Côté IM, Darling ES, Brown CJ. Interactions among ecosystem stressors and their importance in conservation. Proc Biol Sci 2016;283(1824):20152592. doi: 10.1098/rspb.2015.2592
  33. Chou TC. Frequently asked questions in drug combinations and the mass-action law-based answers. Synergy 2014;1:3–21. doi: 10.1016/j.synres.2014.07.003
  34. U.S. EPA. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures. EPA 630/R-00/002 [displayed 1 July 2025]. Available at https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533
  35. U.S. EPA. Guidelines for the Health Risk Assessment of Chemical Mixtures (Final Report, 1986). U.S. Environmental Protection Agency, Washington, D.C., EPA/630/R-98/002, 1986 [displayed 22 July 2025]. Available at https://www.epa.gov/risk/guidelines-health-risk-assessment-chemical-mixtures
  36. Scientific Committee on Health, Environmental and Emerging Risks (SCHEER). Memorandum on Weight of Evidence approach for Risk Assessment. Revision 2024 [displayed 22 July 2025]. Available at https://health.ec.europa.eu/scientific-committees/scientific-committee-health-environmental-and-emerging-risks-scheer_en
  37. Kar S, Leszczynski J. Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 2019;7(1):15. doi: 10.3390/toxics7010015
  38. Christensen FM, Eisenreich SJ, Rasmussen K, Riego Sintes J, Sokull-Kluettgen B, Van De Plassche EJ. European experience in chemicals management: integrating science into policy. Environ Sci Technol 2011;45:80–9. doi: 10.1021/es101541b
  39. Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 1953;3(6):285–90. PMID: 13081480
  40. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH. Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures composed of similarly acting chemicals. Environ Toxicol Chem 2020;19:2341–7. doi: 10.1002/etc.5620190926
  41. European Food Safety Authority (EFSA). Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Panel on Plant Protection Products and their Residues (PPR). EFSA J 2013;11(7):3290. doi: 10.2903/j.efsa.2013.3290 [displayed 1 July 2025].
  42. Belden JB, Gilliom RJ, Lydy MJ. How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 2007;3:364–72. PMID: 17695109
  43. Puckowski A, Stolte S, Wagil M, Markiewicz M, Lukaszewicz P, Stepnowski P, Białk-Bielińska A. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna. Int J Hyg Environ Health 2017;220:575–82. doi: 10.1016/j.ijheh.2017.01.011
  44. Cedergreen N. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One 2014;9(5):e96580. doi: 10.1371/journal.pone.0096580
  45. Kortenkamp A. Invited Perspective: How Relevant Are Mode-of-Action Considerations for the Assessment and Prediction of Mixture Effects? Environ Health Perspect 2022;130(4):41302. doi: 10.1289/EHP11051
  46. Schmuck R, Stadler T, Schmidt H-W. Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag Sci 2003;59:279–86. doi: 10.1002/ps.626
  47. Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 2012;46(5):2564–73. doi: 10.1021/es2034125
  48. Olwenn M, Scholze M, Ermler S, McPhie J, Bopp SK, Kienzler A, Parissis N, Kortenkamp A. Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environ Int 2021;146:106206. doi: 10.1016/j.envint.2020.106206
  49. Taenzler V, Weyers A, Maus C, Ebeling M, Levine S, Cabrera A, Schmehl D, Gao Z, Rodea-Palomares I. Acute toxicity of pesticide mixtures to honey bees is generally additive, and well predicted by Concentration Addition. Sci Total Environ 2023;857:159518. doi: 10.1016/j.scitotenv.2022.159518
  50. Bliss CI. The toxicity of poisons applied jointly. Ann Appl Biol 1942;26:585–615. doi: 10.1111/j.1744-7348.1939.tb06990.x
  51. Groten JP. Mixtures and interactions. Food Chem Toxicol 2000;38(Suppl 1):S65–71. doi: 10.1016/s0278-6915(99)00135-0
  52. Cedergreen N, Christensen AM, Kamper A, Kudsk P, Mathiassen SK, Streibig JC, Sørensen H. A review of independent action compared to concentration addition as reference models for mixtures of compounds with different molecular target sites. Environ Toxicol Chem 2008;27:1621–32. doi: 10.1897/07-474.1
  53. Shao Y, Chen Z, Hollert H, Zhou S, Deutschmann B, Seiler T-B. Toxicity of 10 organic micropollutants and their mixture: implications for aquatic risk assessment. Sci Total Environ 2019;666:1273–82. doi: 10.1016/j.scitotenv.2019.02.047
  54. Silva ARR, Cardoso DN, Cruz A, Mendo S, Soares A, Loureiro S. Long-term exposure of Daphnia magna to carbendazim: how it affects toxicity to another chemical or mixture. Environ Sci Pollut Res 2019;26:16289–302. doi: 10.1007/s11356-019-05040-1
  55. Belden JB. The acute toxicity of pesticide mixtures to honey bees. Integr Environ Assess Manag 2022;18:1694–704. doi: 10.1002/ieam.4595
  56. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010;70:440–6. doi: 10.1158/0008-5472.CAN-09-1947
  57. Ojo AF, Peng C, Ng JC. Combined effects and toxicological interactions of perfluoroalkyl and polyfluoroalkyl substances mixtures in human liver cells (HepG2). Environ Pollut 2020;263:114182. doi: 10.1016/j.envpol.2020.114182
  58. González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 2013;15:2050–64. doi: 10.1016/j.watres.2013.01.020
  59. Howard GJ, Webster TF. Generalized concentration addition: a method for examining mixtures containing partial agonists. J Theor Biol 2009;259:469–77. doi: 10.1016/j.jtbi.2009.03.030
  60. Tanaka Y, Tada M. Generalized concentration addition approach for predicting mixture toxicity. Environ Toxicol Chem 2017;36:265–75. doi: 10.1002/etc.3503
  61. Hadrup N, Taxvig C, Pedersen M, Nellemann C, Hass U, Vinggaard AM. Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro. PLoS One 2013;8:e70490. doi: 10.1371/journal.pone.0070490
  62. Escher B, Braun G, Zarfl C. Exploring the concepts of concentration addition and independent action using a linear low-effect mixture model. Environ Toxicol Chem 2020;39:2552–9. doi: 10.1002/etc.4868
  63. Roy K, Kar S, Das RN. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment. 1st ed. Cambridge (MA): Academic Press; 2015.
  64. Wood DJ, Carlsson L, Eklund M, Norinder U, Stålring J. QSAR with experimental and predictive distributions: an information theoretic approach for assessing model quality. J Comput Aided Mol Des 2013;27:203–19. doi: 10.1007/s10822-013-9639-5
  65. U.S. Environmental Protection Agency (EPA). Ecological Structure Activity Relationships (ECOSAR) Model [displayed 10 July 2025]. Available at https://www.epa.gov/chemical-research/ecological-structure-activity-relationships-ecosar-predictive-model
  66. Graumans MHF, Hoeben WFLM, Ragas AMJ, Russel FGM, Scheepers PTJ. In silico ecotoxicity assessment of pharmaceutical residues in wastewater following oxidative treatment. Environ Res 2024;217:117833. doi: 10.1016/j.envres.2023.117833
  67. Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci 2007;26:694–701. doi: 10.1002/qsar.200610151
  68. OECD. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD Series on Testing and Assessment No. 69, 2007. Available at https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
  69. Cvetnic M, Perisic DJ, Kovacic M, Ukic S, Bolanca T, Rasulev B, Kusic H, Loncaric Bozic A. Toxicity of aromatic pollutants and photooxidative intermediates in water: a QSAR study. Ecotoxicol Environ Saf 2019;169:918–27. doi: 10.1016/j.ecoenv.2018.10.100
  70. Cronin MTD, Walker JD, Jaworska JS, Comber MHI, Watts CD, Worth AP. Use of QSAR in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 2003;111:1376–90. PMID: 12896862
  71. Dimitrov S, Koleva Y, Lewis M, Breton R, Veith G, Mekenyan O. Modeling mode of action of industrial chemicals: application using chemicals on Canada’s Domestic Substances List (DSL). QSAR Comb Sci 2023;22:5–17. doi: 10.1002/qsar.200390006
  72. Chatterjee M, Roy K. Prediction of aquatic toxicity of chemical mixtures by the QSAR approach using 2D structural descriptors. J Hazard Mater 2021;408:124936. doi: 10.1016/j.jhazmat.2020.124936
  73. Quin L-T, Chen Y-H, Zhang X, Mo L-Y, Zeng H-H, Liang Y-P. QSAR prediction of additive and non-additive mixture toxicities of antibiotics and pesticide. Chemosphere 2018;198:122–9. doi: 10.1016/j.chemosphere.2018.01.142
  74. Wang Z, Zhang F, Wang D-G. Predicting joint toxicity of chemicals by incorporating a weighted descriptor into a mixture model: Cases for binary antibiotics and binary nanoparticles. Ecotox Environ Saf 2022;236:113472. doi: 10.1016/j.ecoenv.2022.113472
  75. Toolaram AP, Menz J, Rastogi T, Leder C, Kümmerer K, Schneider M. Hazard screening of photo-transformation products from pharmaceuticals: Application to selective β1-blockers atenolol and metoprolol. Sci Total Environ 2017;579:1769–80. doi: 10.1016/j.scitotenv.2016.10.242
  76. Zhang J, Zhang M, Tao H, Qi G, Guo W, Ge H, Shi JA. QSAR–ICE–SSD model prediction of the PNECs for per- and polyfluoroalkyl substances and their ecological risks in an area of electroplating factories. Molecules 2021;26:6574. doi: 10.3390/molecules26216574
  77. Wang MWH, Goodman JM, Allen TEH. Machine learning in predictive toxicology: recent applications and future directions for classification models. Chem Res Toxicol 2021;34:217–39. doi: 10.1021/acs.chemrestox.0c00316
  78. Liu J, Guo W, Dong F, Patterson TA, Hong H. Machine learning for predicting organ toxicity. In: Hong H, editor. Machine Learning and Deep Learning in Computational Toxicology. Chapter 22. Cham: Springer; 2023. p. 519–37. doi: 10.1007/978-3-031-20730-3_22
  79. Cavasotto CN, Scardino V. Machine learning toxicity prediction: latest advances by toxicity end point. ACS Omega 2022;7:47536–46. doi: 10.1021/acsomega.2c05693
  80. Thomas RS, Paules RS, Simeonov A, Fitzpatrick SC, Crofton KM, Casey WM, Mendrick DL. The US Federal Tox21 Program: A strategic and operational plan for continued leadership. ALTEX 2018;35:163–8. doi: 10.14573/altex.1803011
  81. Tice RR, Austin CP, Kavlock RJ, Bucher JR. Improving the human hazard characterization of chemicals: A tox21 update. Environ Health Perspect 2013;121:756–65. doi: 10.1289/ehp.1205784
  82. Chatterjee M, Roy K. Chemical similarity and machine learning-based approaches for the prediction of aquatic toxicity of binary and multicomponent pharmaceutical and pesticide mixtures against Aliivibrio fischeri. Chemosphere 2022;308:136463. doi: 10.1016/j.chemosphere.2022.136463
  83. Feinstein J, Sivaraman G, Picel K, Peters B, Vázquez-Mayagoitia A, Ramanathan A, MacDonell M, Foster I, Yan E. Uncertainty-informed deep transfer learning of perfluoroalkyl and polyfluoroalkyl substance toxicity. J Chem Inf Model 2021;61:5793–803. doi: 10.1021/acs.jcim.1c01204
  84. Cipullo S, Snapir B, Prpich G, Campo P, Coulon F. Prediction of bioavailability and toxicity of complex chemical mixtures through machine learning models. Chemosphere 2019;215:388–95. doi: 10.1016/j.chemosphere.2018.10.056
DOI: https://doi.org/10.2478/aiht-2025-76-3976 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 183 - 194
Submitted on: Mar 1, 2025
|
Accepted on: Aug 1, 2025
|
Published on: Sep 30, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Josipa Papac Zjačić, Hrvoje Kušić, Ana Lončarić Božić, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution 4.0 License.