Have a personal or library account? Click to login
Carbapenem-resistant bacteria in the environment Cover
Open Access
|Jun 2025

References

  1. Xenex. CDC says post-antibiotic era is already here, 2024 [displayed 9 December 2024]. Available at https://xenex.com/cdc-says-post-antibiotic-era-is-already-here/
  2. World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis, 2017 [displayed 24 April 2025]. Available at https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12
  3. World Health Organization. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance, 2024 [displayed 24 April 2025]. Available at https://www.who.int/publications/i/item/9789240093461
  4. Tuhamize B, Bazira J. Carbapenem-resistant Enterobacteriaceae in the livestock, humans and environmental samples around the globe: a systematic review and meta-analysis. Sci Rep 2024;14(1):16333. doi: 10.1038/s41598-024-64992-8
  5. European Centre for Disease Prevention and Control and World Health Organization. Antimicrobial resistance surveillance in Europe 2023 – 2021 data. Stockholm: Publications Office of the European Union; 2023. doi: 10.2900/63495
  6. Tambić Andrašević A, Tambić T, urednici. Osjetljivost i rezistencija bakterija na antibiotike u Republici Hrvatskoj u 2017. g. [Antibiotic resistance in Croatia, 2017, in Croatian]. Zagreb: Akademija medicinskih znanosti Hrvatske; 2018.
  7. Pitt SJ, Gunn A. The One Health Concept. Br J Biomed Sci 2024;81:12366. doi: 10.3389/bjbs.2024.12366
  8. White A, Hughes JM. Critical importance of a One Health approach to antimicrobial resistance. Ecohealth 2019;16:404–9. doi: 10.1007/s10393-019-01415-5
  9. Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024;22:598–616. doi: 10.1038/s41579-024-01054-w
  10. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007;5:939–51. doi: 10.1038/nrmicro1789
  11. Brown SP, Cornforth DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 2012;20:336–42. doi: 10.1016/j.tim.2012.04.005
  12. Maragakis LL, Perl TM. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 2008;46:1254–63. doi: 10.1086/529198
  13. Nocera FP, Attili AR, De Martino L. Acinetobacter baumannii: Its clinical significance in human and veterinary medicine. Pathogens 2021;10(2):127. doi: 10.3390/pathogens10020127
  14. Jakovac S, Goić-Barišić I, Pirija M, Kovačić A, Hrenović J, Petrović T, Tutiš B, Tonkić M. Molecular characterization and survival of carbapenem-resistant Acinetobacter baumannii isolated from hospitalized patients in Mostar, Bosnia and Herzegovina. Microb Drug Resist 2021;27:383–90. doi: 10.1089/mdr.2020.0163
  15. Park YK, Jung SI, Park KH, Kim SH, Ko KS. Characteristics of carbapenem-resistant Acinetobacter spp. other than Acinetobacter baumannii in South Korea. Int J Antimicrob Agents 2012;39:81–5. doi: 10.1016/j.ijantimicag.2011.08.006
  16. Chen J, Li J, Huang F, Fang J, Cao Y, Zhang K, Zhou H, Cai J, Cui W, Chen C, Zhang G. Clinical characteristics, risk factors and outcomes of Klebsiella pneumoniae pneumonia developing secondary Klebsiella pneumoniae bloodstream infection. BMC Pulm Med 2023;23:102. doi: 10.1186/s12890-023-02394-8
  17. Liu Y, Huang L, Cai J, Zhu H, Li J, Yu Y, Xu Y, Shi G, Feng Y. Clinical characteristics of respiratory tract infection caused by Klebsiella pneumoniae in immunocompromised patients: a retrospective cohort study. Front Cell Infect Microbiol 2023;13:1137664. doi: 10.3389/fcimb.2023.1137664
  18. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2022. Stockholm: ECDC; 2023.
  19. Zhao Y, Chen D, Chen K, Xie M, Guo J, Chan EWC, Xie L, Wang J, Chen E, Chen S, Chen W, Jelsbak L. Epidemiological and genetic characteristics of clinical carbapenem-resistant Pseudomonas aeruginosa strains in Guangdong province, China. Microbiol Spectr 2023;11(3):e04261–22. doi: 10.1128/spectrum.04261-22
  20. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022;7(1):199. doi: 10.1038/s41392-022-01056-1
  21. Del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases. Int J Antimicrob Agents 2020;56(6):106196. doi: 10.1016/j.ijantimicag.2020.106196
  22. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. Atlanta (GA): U.S. Department of Health and Human Services, CDC; 2019. doi: 10.15620/cdc:82532
  23. Li Q, Zhou X, Yang R, Shen X, Li G, Zhang C, Li P, Li S, Xie J, Yang Y. Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: Resistance genes, therapeutics, and prevention – a comprehensive review. Front Public Health 2024;12:1376513. doi: 10.3389/fpubh.2024.1376513
  24. Goic-Barisic I, Music MS, Drcelic M, Tuncbilek S, Akca G, Jakovac S, Tonkić M, Hrenovic J. Molecular characterisation of colistin and carbapenem-resistant clinical isolates of Acinetobacter baumannii from Southeast Europe. J Glob Antimicrob Resist 2023;33:26–30. doi: 10.1016/j.jgar.2023.02.019
  25. Mancuso G, Gaetano S De, Midiri A, Zummo S, Biondo C. The challenge of overcoming antibiotic resistance in carbapenem-resistant gram-negative bacteria: “Attack on Titan”. Microorganisms 2023;11(8):1912. doi: 10.3390/microorganisms11081912
  26. Noster J, Thelen P, Hamprecht A. Detection of multidrug-resistant Enterobacterales—from ESBLs to carbapenemases. Antibiotics 2021;10:1140. doi: 10.3390/antibiotics10091140
  27. Puljko A, Barišić I, Dekić Rozman S, Križanović S, Babić I, Jelić M, Maravić A, Udiković-Kolić N. Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Environ Int 2024;185:108554. doi: 10.1016/j.envint.2024.108554
  28. Göttig S, Walker SV, Saleh A, Koroska F, Sommer J, Stelzer Y, Steinmann J, Hamprecht A. Comparison of nine different selective agars for the detection of carbapenemase-producing Enterobacterales (CPE). Eur J Clin Microbiol Infect Dis 2020;39:923–7. doi: 10.1007/s10096-019-03786-7
  29. Hrenovic J, Ganjto M, Goic-Barisic I. Carbapenem-resistant bacteria in a secondary wastewater treatment plant. Water SA 2017;43:186–91. doi: 10.4314/wsa.v43i2.02
  30. Tacão M, Correia A, Henriques IS. Low prevalence of carbapenem-resistant bacteria in river water: resistance is mostly related to intrinsic mechanisms. Microb Drug Resist 2015;21:497–506. doi: 10.1089/mdr.2015.0072
  31. Zaidi S, Zaheer R, Thomas K, Abeysekara S, Haight T, Saville L, Stuart-Edwards M, Zovoilis A, McAllister TA. Genomic characterization of carbapenem-resistant bacteria from beef cattle feedlots. Antibiotics 2023;12(6):960. doi: 10.3390/antibiotics12060960
  32. Hrenovic J, Durn G, Kazazic S, Dekic S, Seruga Music M. Untreated wastewater as a source of carbapenem-resistant bacteria to the riverine ecosystem. Water SA 2019;45:55–62. doi: 10.4314/wsa.v45i1.07
  33. Hrenovic J, Goic-Barisic I, Kazazic S, Kovacic A, Ganjto M, Tonkic M. Carbapenem-resistant isolates of Acinetobacter baumannii in a municipal wastewater treatment plant. Euro Surveill 2016;21(15):30195. doi: 10.2807/1560-7917.ES.2016.21.15.30195
  34. Urase T, Goto S, Sato M. Monitoring carbapenem-resistant Enterobacterales in the environment to assess the spread in the community. Antibiotics 2022;11(7):917. doi: 10.3390/antibiotics11070917
  35. Dekić Rozman S, Butorac A, Bertoša R, Hrenović J, Markeš M. Loss of thermotolerance in antibiotic-resistant Acinetobacter baumannii. Int J Environ Health Res 2022;32:1581–93. doi: 10.1080/09603123.2021.1898550
  36. Li D, Yi J, Han G, Qiao L. MALDI-TOF mass spectrometry in clinical analysis and research. ACS Meas Sci Au 2022;2:385–404. doi: 10.1021/acsmeasuresciau.2c00019
  37. Hleba L, Hlebová M, Kováčik A, Čuboň J, Medo J. Carbapenemase producing Klebsiella pneumoniae (KPC): what is the best MALDI-TOF MS detection method. Antibiotics 2021;10(12):1549. doi: 10.3390/antibiotics10121549.
  38. Hrenovic J, Seruga Music M, Durn G, Dekic S, Hunjak B, Kisic I. Carbapenem-resistant Acinetobacter baumannii recovered from swine manure. Microb Drug Resist 2019;25:725–30. doi: 10.1089/mdr.2018.0087
  39. Drk S, Puljko A, Dželalija M, Udiković-Kolić N. Characterization of third generation cephalosporin- and carbapenem-resistant Aeromonas isolates from municipal and hospital wastewater. Antibiotics 2023;12(3):513. doi: 10.3390/antibiotics12030513
  40. Shin HB, Yoon J, Lee Y, Kim MS, Lee K. Comparison of MALDI-TOF MS, housekeeping gene sequencing, and 16S rRNA gene sequencing for identification of Aeromonas clinical isolates. Yonsei Med J 2015;56:550–5. doi: 10.3349/ymj.2015.56.2.550
  41. Hrabák J, Chudácková E, Walková R. Matrix-assisted laser desorption ionization-time of flight (MALDITOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev 2013;26:103–14. doi: 10.1128/CMR.00058-12
  42. Henriques IS, Araújo S, Azevedo JSN, Alves MS, Chouchani C, Pereira A, Correia A. Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal. Microb Drug Resist 2012;18:531–7. doi: 10.1089/mdr.2012.0029
  43. Oliveira M, Leonardo IC, Nunes M, Silva AF, Barreto Crespo MT. Environmental and pathogenic carbapenem resistant bacteria isolated from a wastewater treatment plant harbour distinct antibiotic resistance mechanisms. Antibiotics 2021;10(9):1118. doi: 10.3390/antibiotics10091118
  44. Maguire M, Serna C, Serra NM, Kovarova A, Connor LO, Cahill N, Hooban B, DeLappe N, Brennan W, Devane G, Cormican M, Morris D, Coughlan SC, Gonzalez-zorn B, Burke LP. Spatiotemporal and genomic analysis of carbapenem resistance elements in Enterobacterales from hospital inpatients and natural water ecosystems of an Irish city. Microbiol Spectr 2025;13(1):e0090424. doi: 10.1128/spectrum.00904-24
  45. Kehl K, Schallenberg A, Szekat C, Albert C, Sib E, Exner M, Zacharias N, Schreiber C, Parčina M, Bierbaum G. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment Sci Total Environ 2021;806(Pt 4):151339. doi: 10.1016/j.scitotenv.2021.151339
  46. Makowska N, Philips A, Dabert M, Nowis K, Koczura R, Mokracka J. Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome. Water Res 2019;170:115277. doi: 10.1016/j.watres.2019.115277
  47. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 15.0, 2025 [displayed 24 April 2025]. Available at https://www.eucast.org
  48. Clinical and Laboratory Standards Institute. CLSI M100—Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2023.
  49. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016–2017. Geneva: World Health Organization; 2017.
  50. Al-Zahrani IA. Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories: a review of current challenges. Saudi Med J 2018;39:861–72. doi: 10.15537/smj.2018.9.22840
  51. Rudresh SM, Ravi GS, Sunitha L, Hajira SN, Kalaiarasan E, Harish BN. Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. J Lab Physicians 2017;9:303–7. doi: 10.4103/jlp.jlp_138_16
  52. Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 2008;14(Suppl 1):90–103. doi: 10.1111/j.1469-0691.2007.01846.x
  53. Noyal MJC, Menezes GA, Harish BN, Sujatha S, Parija SC. Simple screening tests for detection of carbapenemases in clinical isolates of nonfermentative gram-negative bacteria. Indian J Med Res 2009;129:707–12. PMID: 19692754
  54. Tsai Y-M, Wang S, Chiu H-C, Kao C-Y, Wen L-L. Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae. BMC Microbiol 2020;20(1):315. doi: 10.1186/s12866-020-02010-3
  55. Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Futur Sci OA 2020;6(3):FSO438. doi: 10.2144/fsoa-2019-0098
  56. Pasteran F, Tijet N, Melano RG, Corso A. Simplified protocol for Carba NP test for enhanced detection of carbapenemase producers directly from bacterial cultures. J Clin Microbiol 2015;53:3908–11. doi: 10.1128/JCM.02032-15
  57. Bouslah Z. Carba NP test for the detection of carbapenemase-producing Pseudomonas aeruginosa. Med Mal Infect 2020;50:466–79. doi: 10.1016/j.medmal.2019.12.002
  58. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement. CLSI Document M100-S25. Wayne (PA): Clinical and Laboratory Standards Institute; 2015.
  59. Silver LL. Rational approaches to antibacterial discovery: pre-genomic directed and phenotypic screening in Antibiotic discovery and development: In: Dougherty T, Pucci M, editors. Antibiotic discovery and development. Boston (MA): Springer; 2012. p. 33–75. doi: 10.1007/978-1-4614-1400-1_2
  60. Birnbaum J, Kahan FM, Kropp H, MacDonald JS. Carbapenems, a new class of beta-lactam antibiotics: discovery and development of imipenem/cilastatin. Am J Med 2000;78:3–21. doi: 10.1016/0002-9343(85)90097-x
  61. Reygaert CW. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018;4:482–501. doi: 10.3934/microbiol.2018.3.482
  62. Sandner-Miranda L, Vinuesa P, Cravioto A, Morales-Espinosa R. The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Front Microbiol 2018;9:828. doi: 10.3389/fmicb.2018.00828
  63. Lazim H, Salah AM, Slama N, Barkallah I, Ben Hassen A, Limam F. Biochemical detection of a metallo-β-lactamase in carbapenem resistant strain of Streptomyces sp. CN229 isolated from soil. Ann Microbiol 2007;57:515–9. doi: 10.1007/BF03175348
  64. Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis 2016;3:15–21. doi: 10.1177/2049936115621709
  65. Brooke JS. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert Rev Anti Infect Ther 2014;12:1–4. doi: 10.1586/14787210.2014.864553
  66. Mikhailovich V, Heydarov R, Zimenkov D, Chebotar I. Stenotrophomonas maltophilia virulence: a current view. Front Microbiol 2024;15:1385631. doi: 10.3389/fmicb.2024.1385631
  67. Said MS, Tirthani E, Lesho E. Stenotrophomonas Maltophilia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
  68. EUCAST. Expected resistant and susceptible phenotypes (ver. 1.2), 2023 [displayed 24. April 2025]. Available at https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes
  69. Gatermann S, Das S, Dubreuil L, Giske CG, Kahlmeter G, Lina G, Lindemann C, MacGowan A, Meletiadis J, Rossolini GM, Turnidge J, Cantón R. Expected phenotypes and expert rules are important complements to antimicrobial susceptibility testing. Clin Microbiol Infect 2022;28:764–7. doi: 10.1016/j.cmi.2022.03.007
  70. Tao S, Chen H, Li N, Wang T, Liang W. The spread of antibiotic resistance genes in vivo model. Can J Infect Dis Med Microbiol 2022;2022:3348695. doi: 10.1155/2022/3348695
  71. Steed DB, Wang T, Raheja D, Waldman AD, Babiker A, Dhere T, Kraft CS, Woodworth MH. Gram-negative taxa and antimicrobial susceptibility after fecal microbiota transplantation for recurrent Clostridioides difficile infection. mSphere 2020:5(5):e00853–20. doi: 10.1128/mSphere.00853-20
  72. Fondi M, Bacci G, Brilli M, Papaleo MC, Mengoni A, Vaneechoutte M, Dijkshoorn L, Fani R. Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evol Biol 2010;10:59. doi: 10.1186/1471-2148-10-59
  73. Acar Kirit H, Bollback JP, Lagator M. The Role of the environment in horizontal gene transfer. Mol Biol Evol 2022;39(11):msac220. doi: 10.1093/molbev/msac220
  74. Brown CL, Maile-Moskowitz A, Lopatkin AJ, Xia K, Logan LK, Davis BC, Zhang L, Vikesland PJ, Pruden A. Selection and horizontal gene transfer underlie microdiversity-level heterogeneity in resistance gene fate during wastewater treatment. Nat Commun 2024;15(1):5412. doi: 10.1038/s41467-024-49742-8
  75. Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023;12(2):328. doi: 10.3390/antibiotics12020328
  76. Abe K, Nomura N, Suzuki S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2021;96(5):fiaa031. doi: 10.1093/FEMSEC/FIAA031
  77. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 2012;65:183–95. doi: 10.1111/j.1574-695X.2012.00960.x
  78. Suay-García B, Pérez-Gracia MT. Present and future of carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019;8(3):122. doi: 10.3390/antibiotics8030122
  79. Buehrle DJ, Shields RK, Clarke LG, Potoski BA, Clancy CJ, Hong Nguyen M. Carbapenem-resistant Pseudomonas aeruginosa bacteremia: risk factors for mortality and microbiologic treatment failure. Antimicrob Agents Chemother 2017;61(1):e01243–16. doi: 10.1128/aac.01243-16
  80. Bennett JE, Dolin R, Blaser MJ. Principles and Practice of Infectious Diseases. 9th ed. Amsterdam: Elsevier; 2019.
  81. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, Barbarisi A, Passavanti MB, Pace MC. Mechanisms of action of carbapenem resistance. Antibiotics 2022;11(3):421. doi: 10.3390/antibiotics11030421
  82. Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol 2021;12:750662. doi: 10.3389/fmicb.2021.750662
  83. Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev 2014;27:241–63. doi: 10.1128/CMR.00117-13
  84. Castanheira M, Mendes RE, Gales AC. Global epidemiology and mechanisms of resistance of Acinetobacter baumannii-calcoaceticus complex. Clin Infect Dis 2023;76(Suppl 2):S166–78. doi: 10.1093/cid/ciad109
  85. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006;258:72–7. doi: 10.1111/j.1574-6968.2006.00195.x
  86. Jin L, Wang R, Wang X, Wang Q, Zhang Y, Yin Y, Wang H. Emergence of mcr-1 and carbapenemase genes in hospital sewage water in Beijing, China. J Antimicrob Chemother 2018;73:84–7. doi: 10.1093/jac/dkx355
  87. Centers for Disease Control and Prevention. Antimicrobial Resistance Threats in the United States, 2021–2022. Atlanta (GA): U.S. Department of Health and Human Services, CDC; 2024.
  88. Hu H, Lou Y, Feng H, Tao J, Shi W, Ni S, Pan Q, Ge T, Shen P, Zhong Z, Xiao Y, Qu T. Molecular characterization of carbapenem-resistant Acinetobacter baumannii isolates among intensive care unit patients and environment. Infect Drug Resist 2022;15:1821–9. doi: 10.2147/IDR.S349895
  89. Lerner A, Adler A, Abu-Hanna J, Meitus I, Navon-Venezia S, Carmeli Y. Environmental contamination by carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 2013;51:177–81. doi: 10.1128/JCM.01992-12
  90. Baleivanualala SC, Matanitobua S, Samisoni Y, Soqo V, Smita S, Mailulu J, Nabose I, Lata A, Shayam C, Sharma R, Wilson D, Crump JA, Ussher JE. Environmental contamination with carbapenem resistant Acinetobacter baumannii in healthcare settings in Fiji: a potential source of infection. Front Cell Infect Microbiol 2024;14:1429443. doi: 10.3389/fcimb.2024.1429443
  91. Chia PY, Sengupta S, Kukreja A, Ponnampalavanar SSL, Ng OT, Marimuthu K. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob Resist Infect Control 2020;9(1):29. doi: 10.1186/s13756-020-0685-1
  92. Mousa M, Schwartz D, Carmeli Y, Nutman A. Droplet aerosol dissemination of carbapenem-resistant Acinetobacter baumannii surrounding ventilated patients. Infect Control Hosp Epidemiol 2019;40:365–7. doi: 10.1017/ice.2018.335
  93. Pustijanac E, Hrenović J, Vranić-Ladavac M, Močenić M, Karčić N, Lazarić Stefanović L, Hrstić I, Lončarić J, Šeruga Musić M, Drčelić M, Majstorović D, Kovačić I. Dissemination of clinical Acinetobacter baumannii isolate to hospital environment during the COVID-19 pandemic. Pathogens 2023;12(3):410. doi: 10.3390/pathogens12030410
  94. Gonçalves DLDR, Chang MR, Nobrega GD, Venancio FA, Higa Júnior MG, Fava WS. Hospital sewage in Brazil: a reservoir of multidrug-resistant carbapenemase-producing Enterobacteriaceae. Braz J Biol 2024;84:e277750. doi: 10.1590/1519-6984.277750
  95. Bedenić B, Siroglavić M, Slade M, Šijak D, Dekić S, Šeruga Musić M, Godan-Hauptman A, Hrenović J. Comparison of clinical and sewage isolates of Acinetobacter baumannii from two long-term care facilities in Zagreb; mechanisms and routes of spread. Arch Microbiol 2020;202:361–8. doi: 10.1007/s00203-019-01750-9
  96. Pereira AL, de Oliveira PM, Faria-Junior C, Alves EG, de Castro E Caldo Lima GR, da Costa Lamounier TA, Haddad R, de Araújo WN. Environmental spreading of clinically relevant carbapenem-resistant gram-negative bacilli : the occurrence of bla KPC-or-NDM strains relates to local hospital activities. BMC Microbiol 2022;22(1):6. doi: 10.1186/s12866-021-02400-1
  97. Sahoo S, Sahoo RK, Gaur M, Behera DU, Sahu A, Das A, Dey S, Dixit S, Subudhi E. Environmental carbapenem-resistant Acinetobacter baumannii in wastewater receiving urban river system of eastern India: a public health threat. Int J Environ Sci Technol 2022;20:9901–10. doi: 10.1007/s13762-022-04569-y
  98. Hrenovic J, Ivankovic T, Ivekovic D, Repec S, Stipanicev D, Ganjto M. The fate of carbapenem-resistant bacteria in a wastewater treatment plant. Water Res 2017;126:232–9. doi: 10.1016/j.watres.2017.09.007
  99. Higgins PG, Hrenovic J, Seifert H, Dekic S. Characterization of Acinetobacter baumannii from water and sludge line of secondary wastewater treatment plant. Water Res 2018;140:261–7. doi: 10.1016/j.watres.2018.04.057
  100. Shin H, Kim Y, Han D, Hur HG. Emergence of high level carbapenem and extensively drug resistant Escherichia coli ST746 producing NDM-5 in influent of wastewater treatment plant, Seoul, South Korea. Front Microbiol 2021;12:645411. doi: 10.3389/fmicb.2021.645411
  101. Araújo S, Sousa M, Tacão M, Baraúna RA, Silva A, Ramos R, Alves A, Manaia CM, Henriques I. Carbapenem-resistant bacteria over a wastewater treatment process: carbapenem-resistant Enterobacteriaceae in untreated wastewater and intrinsically-resistant bacteria in final effluent. Sci Total Environ 2021;782:146892. doi: 10.1016/j.scitotenv.2021.146892
  102. Mathys DA, Mollenkopf DF, Feicht SM, Adams RJ, Albers AL, Stuever DM, Grooters SV, Ballash GA, Daniels JB, Wittum TE. Carbapenemase-producing Enterobacteriaceae and Aeromonas spp. present in wastewater treatment plant effluent and nearby surface waters in the US. PLoS One 2018;14(6):e0218650. doi: 10.1371/journal.pone.0218650
  103. Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach CF, Fick J, Kristiansson E, Tysklind M, Larsson DGJ. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci Total Environ 2016;572:697–712. doi: 10.1016/j.scitotenv.2016.06.228
  104. Lepuschitz S, Schill S, Stoeger A, Pekard-Amenitsch S, Huhulescu S, Inreiter N, Hartl R, Kerschner H, Sorschag S, Springer B, Brisse S, Allerberger F, Mach RL, Ruppitsch W. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. Sci Total Environ 2019;662:227–35. doi: 10.1016/j.scitotenv.2019.01.179
  105. Teixeira P, Tacão M, Pureza L, Gonçalves J, Silva A, Cruz-Schneider MP, Henriques I. Occurrence of carbapenemase-producing Enterobacteriaceae in a Portuguese river: blaNDM, blaKPC and blaGES among the detected genes. Environ Pollut 2020;260:113913. doi: 10.1016/j.envpol.2020.113913
  106. Zurfluh K, Hächler H, Nüesch-Inderbinen M, Stephan R. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 2013;79:3021–6. doi: 10.1128/AEM.00054-13
  107. Serwecińska L, Kiedrzyńska E, Kiedrzyński M. A catchment-scale assessment of the sanitary condition of treated wastewater and river water based on fecal indicators and carbapenem-resistant Acinetobacter spp. Sci Total Environ 2021;750:142266. doi: 10.1016/j.scitotenv.2020.142266
  108. Harmon DE, Miranda OA, McCarley A, Eshaghian M, Carlson N, Ruiz C. Prevalence and characterization of carbapenem-resistant bacteria in water bodies in the Los Angeles–Southern California area. Microbiologyopen 2019;8(4):e00692. doi: 10.1002/mbo3.692
  109. Paschoal RP, Campana EH, Corrêa LL, Montezzi LF, Barrueto LRL, da Silva IR, Bonelli RR, Castro LS, Picão RC. Concentration and variety of carbapenemase producers in recreational coastal waters showing distinct levels of pollution. Antimicrob Agents Chemother 2017;61(12):e01963–17. doi: 10.1128/aac.01963-17
  110. Andrade VC, Caetano T, Mendo S, de Oliveira AJFC. Carbapenem resistant Enterobacteriaceae from port areas in São Paulo State (Brazil): isolation and molecular characterization. Mar Pollut Bull 2020;159:111329. doi: 10.1016/j.marpolbul.2020.111329
  111. Hrenovic J, Durn G, Seruga Music M, Dekic S, Troskot-Corbic T, Skoric D. Extensively and multi drug-resistant Acinetobacter baumannii recovered from technosol at a dump site in Croatia. Sci Total Environ 2017;607–608:1049–55. doi: 10.1016/j.scitotenv.2017.07.108
  112. Shi X, Li Y, Yang Y, Shen Z, Cai C, Wang Y, Walsh TR, Shen J, Wu Y, Wang S. High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China. J Hazard Mater 2020;406:124298. doi: 10.1016/j.jhazmat.2020.124298
  113. Grönthal T, Österblad M, Eklund M, Jalava J, Nykäsenoja S, Pekkanen K, Rantala M. Sharing more than friendship – transmission of NDM-5 ST167 and CTX-M-9 ST69 Escherichia coli between dogs and humans in a family, Finland, 2015. Euro Surveill 2018;23(27):1700497. doi: 10.2807/1560-7917.ES.2018.23.27.1700497
  114. Gentilini F, Turba ME, Pasquali F, Mion D, Romagnoli N, Zambon E, Terni D, Peirano G, Pitout JDD, Parisi A, Sambri V, Zanoni RG. Hospitalized pets as a source of carbapenem-resistance. Front Microbiol 2018;9:2872. doi: 10.3389/fmicb.2018.02872
  115. Ewers C, Klotz P, Leidner U, Stamm I, Prenger-Berninghoff E, Göttig S, Semmler T, Scheufen S. OXA-23 and ISAba1–OXA-66 class D β-lactamases in Acinetobacter baumannii isolates from companion animals. Int J Antimicrob Agents 2017;49:37–44. doi: 10.1016/j.ijantimicag.2016.09.033
  116. Klotz P, Higgins PG, Schaubmar AR, Failing K, Leidner U, Seifert H, Scheufen S, Semmler T, Ewers C. Seasonal occurrence and carbapenem susceptibility of bovine Acinetobacter baumannii in Germany. Front Microbiol 2019;10:272. doi: 10.3389/fmicb.2019.00272
  117. Daoud Z, Rolain JM. Editorial: “One Health” approach for revealing reservoirs and transmission of antimicrobial resistance. Front Microbiol 2023;14:1170407. doi: 10.3389/fmicb.2023.1170407
  118. Hamza E, Dorgham SM, Hamza DA. Carbapenemase-producing Klebsiella pneumoniae in broiler poultry farming in Egypt. J Glob Antimicrob Resist 2016;7:8–10. doi: 10.1016/j.jgar.2016.06.004
  119. Wilharm G, Skiebe E, Higgins PG, Poppel MT, Blaschke U, Leser S, Heider C, Heindorf M, Brauner P, Jäckel U, Böhland K, Cuny C, Łopińska A, Kaminski P, Kasprzak M, Bochenski M, Ciebiera O, Tobółka M, Żołnierowicz KM, Siekiera J, Seifert H, Gagné S, Salcedo SP, Kaatz M, Layer F, Bender JK, Fuchs S, Semmler T, Pfeifer Y, Jerzak L. Relatedness of wildlife and livestock avian isolates of the nosocomial pathogen Acinetobacter baumannii to lineages spread in hospitals worldwide. Environ Microbiol 2017;19:4349–64. doi: 10.1111/1462-2920.13931
  120. EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Carbapenem resistance in food animal ecosystems. EFSA J 2013;11(12):3501. doi: 10.2903/j.efsa.2013.3501
  121. Liu B-T, Zhang X-Y, Wan S-W, Hao J-J, Jiang R-D, Song F-J. Characteristics of carbapenem-resistant Enterobacteriaceae in ready-to-eat vegetables in China. Front Microbiol 2018;9:1147. doi: 10.3389/fmicb.2018.01147
  122. Jiménez-Belenguer AI, Ferrús MA, Hernández M, García-Hernández J, Moreno Y, Castillo MÁ. Prevalence and characterization of beta-lactam and carbapenem-resistant bacteria isolated from organic fresh produce retailed in eastern Spain. Antibiotics 2023;12(2):387. doi: 10.3390/antibiotics12020387
  123. Espinal P, Martí S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect 2012;80:56–60. doi: 10.1016/j.jhin.2011.08.013
  124. Ferreira C, Luzietti L, Ribeirinho-Soares S, Nunes OC, Vaz-Moreira I, Manaia CM. Survival of clinical and environmental carbapenem-resistant Klebsiella pneumoniae ST147 in surface water. Environ Res J 2023;237(Pt 1):116928. doi: 10.1016/j.envres.2023.116928
  125. Dekic S, Hrenovic J, Durn G, Venter C. Survival of extensively- and pandrug-resistant isolates of Acinetobacter baumannii in soils. Appl Soil Ecol 2020;147:103396. doi: 10.1016/j.apsoil.2019.103396
  126. Kittinger C, Kirschner A, Lipp M, Baumert R, Mascher F, Farnleitner AH, Zarfel GE. Antibiotic resistance of Acinetobacter spp. isolates from the river Danube: susceptibility stays high. Int J Environ Res Public Health 2017;15(1):52. doi: 10.3390/ijerph15010052
DOI: https://doi.org/10.2478/aiht-2025-76-3956 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 87 - 101
Submitted on: Feb 1, 2025
Accepted on: May 1, 2025
Published on: Jun 30, 2025
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Blanka Dadić, Jasna Hrenović, Tomislav Ivanković, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution 4.0 License.