Have a personal or library account? Click to login
Carbapenem-resistant bacteria in the environment Cover
Open Access
|Jun 2025

References

  1. Xenex. CDC says post-antibiotic era is already here, 2024 [displayed 9 December 2024]. Available at <a href="https://xenex.com/cdc-says-post-antibiotic-era-is-already-here/" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://xenex.com/cdc-says-post-antibiotic-era-is-already-here/</a>
  2. World Health Organization. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis, 2017 [displayed 24 April 2025]. Available at <a href="https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12</a>
  3. World Health Organization. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance, 2024 [displayed 24 April 2025]. Available at <a href="https://www.who.int/publications/i/item/9789240093461" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.who.int/publications/i/item/9789240093461</a>
  4. Tuhamize B, Bazira J. Carbapenem-resistant <em>Enterobacteriaceae</em> in the livestock, humans and environmental samples around the globe: a systematic review and meta-analysis. Sci Rep 2024;14(1):16333. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/s41598-024-64992-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-024-64992-8</a></pub-id>
  5. European Centre for Disease Prevention and Control and World Health Organization. Antimicrobial resistance surveillance in Europe 2023 – 2021 data. Stockholm: Publications Office of the European Union; 2023. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2900/63495" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2900/63495</a></pub-id>
  6. Tambić Andrašević A, Tambić T, urednici. Osjetljivost i rezistencija bakterija na antibiotike u Republici Hrvatskoj u 2017. g. [Antibiotic resistance in Croatia, 2017, in Croatian]. Zagreb: Akademija medicinskih znanosti Hrvatske; 2018.
  7. Pitt SJ, Gunn A. The One Health Concept. Br J Biomed Sci 2024;81:12366. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/bjbs.2024.12366" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/bjbs.2024.12366</a></pub-id>
  8. White A, Hughes JM. Critical importance of a One Health approach to antimicrobial resistance. Ecohealth 2019;16:404–9. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10393-019-01415-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10393-019-01415-5</a></pub-id>
  9. Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024;22:598–616. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/s41579-024-01054-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41579-024-01054-w</a></pub-id>
  10. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant <em>Acinetobacter baumannii</em>. Nat Rev Microbiol 2007;5:939–51. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/nrmicro1789" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/nrmicro1789</a></pub-id>
  11. Brown SP, Cornforth DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 2012;20:336–42. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.tim.2012.04.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tim.2012.04.005</a></pub-id>
  12. Maragakis LL, Perl TM. <em>Acinetobacter baumannii</em>: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 2008;46:1254–63. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1086/529198" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1086/529198</a></pub-id>
  13. Nocera FP, Attili AR, De Martino L. <em>Acinetobacter baumannii</em>: Its clinical significance in human and veterinary medicine. Pathogens 2021;10(2):127. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/pathogens10020127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/pathogens10020127</a></pub-id>
  14. Jakovac S, Goić-Barišić I, Pirija M, Kovačić A, Hrenović J, Petrović T, Tutiš B, Tonkić M. Molecular characterization and survival of carbapenem-resistant <em>Acinetobacter baumannii</em> isolated from hospitalized patients in Mostar, Bosnia and Herzegovina. Microb Drug Resist 2021;27:383–90. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1089/mdr.2020.0163" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1089/mdr.2020.0163</a></pub-id>
  15. Park YK, Jung SI, Park KH, Kim SH, Ko KS. Characteristics of carbapenem-resistant <em>Acinetobacter</em> spp. other than <em>Acinetobacter baumannii</em> in South Korea. Int J Antimicrob Agents 2012;39:81–5. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijantimicag.2011.08.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijantimicag.2011.08.006</a></pub-id>
  16. Chen J, Li J, Huang F, Fang J, Cao Y, Zhang K, Zhou H, Cai J, Cui W, Chen C, Zhang G. Clinical characteristics, risk factors and outcomes of <em>Klebsiella pneumoniae</em> pneumonia developing secondary <em>Klebsiella pneumoniae</em> bloodstream infection. BMC Pulm Med 2023;23:102. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/s12890-023-02394-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12890-023-02394-8</a></pub-id>
  17. Liu Y, Huang L, Cai J, Zhu H, Li J, Yu Y, Xu Y, Shi G, Feng Y. Clinical characteristics of respiratory tract infection caused by <em>Klebsiella pneumoniae</em> in immunocompromised patients: a retrospective cohort study. Front Cell Infect Microbiol 2023;13:1137664. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fcimb.2023.1137664" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fcimb.2023.1137664</a></pub-id>
  18. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2022. Stockholm: ECDC; 2023.
  19. Zhao Y, Chen D, Chen K, Xie M, Guo J, Chan EWC, Xie L, Wang J, Chen E, Chen S, Chen W, Jelsbak L. Epidemiological and genetic characteristics of clinical carbapenem-resistant <em>Pseudomonas aeruginosa</em> strains in Guangdong province, China. Microbiol Spectr 2023;11(3):e04261–22. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/spectrum.04261-22" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/spectrum.04261-22</a></pub-id>
  20. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. <em>Pseudomonas aeruginosa</em>: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022;7(1):199. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/s41392-022-01056-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41392-022-01056-1</a></pub-id>
  21. Del Barrio-Tofiño E, López-Causapé C, Oliver A. <em>Pseudomonas aeruginosa</em> epidemic high-risk clones and their association with horizontally-acquired β-lactamases. Int J Antimicrob Agents 2020;56(6):106196. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijantimicag.2020.106196" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijantimicag.2020.106196</a></pub-id>
  22. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. Atlanta (GA): U.S. Department of Health and Human Services, CDC; 2019. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.15620/cdc:82532" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15620/cdc:82532</a></pub-id>
  23. Li Q, Zhou X, Yang R, Shen X, Li G, Zhang C, Li P, Li S, Xie J, Yang Y. Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: Resistance genes, therapeutics, and prevention – a comprehensive review. Front Public Health 2024;12:1376513. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fpubh.2024.1376513" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fpubh.2024.1376513</a></pub-id>
  24. Goic-Barisic I, Music MS, Drcelic M, Tuncbilek S, Akca G, Jakovac S, Tonkić M, Hrenovic J. Molecular characterisation of colistin and carbapenem-resistant clinical isolates of <em>Acinetobacter baumannii</em> from Southeast Europe. J Glob Antimicrob Resist 2023;33:26–30. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jgar.2023.02.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jgar.2023.02.019</a></pub-id>
  25. Mancuso G, Gaetano S De, Midiri A, Zummo S, Biondo C. The challenge of overcoming antibiotic resistance in carbapenem-resistant gram-negative bacteria: “Attack on Titan”. Microorganisms 2023;11(8):1912. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/microorganisms11081912" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/microorganisms11081912</a></pub-id>
  26. Noster J, Thelen P, Hamprecht A. Detection of multidrug-resistant <em>Enterobacterales</em>—from ESBLs to carbapenemases. Antibiotics 2021;10:1140. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics10091140" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics10091140</a></pub-id>
  27. Puljko A, Barišić I, Dekić Rozman S, Križanović S, Babić I, Jelić M, Maravić A, Udiković-Kolić N. Molecular epidemiology and mechanisms of carbapenem and colistin resistance in <em>Klebsiella</em> and other <em>Enterobacterales</em> from treated wastewater in Croatia. Environ Int 2024;185:108554. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.envint.2024.108554" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envint.2024.108554</a></pub-id>
  28. Göttig S, Walker SV, Saleh A, Koroska F, Sommer J, Stelzer Y, Steinmann J, Hamprecht A. Comparison of nine different selective agars for the detection of carbapenemase-producing <em>Enterobacterales</em> (CPE). Eur J Clin Microbiol Infect Dis 2020;39:923–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s10096-019-03786-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10096-019-03786-7</a></pub-id>
  29. Hrenovic J, Ganjto M, Goic-Barisic I. Carbapenem-resistant bacteria in a secondary wastewater treatment plant. Water SA 2017;43:186–91. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.4314/wsa.v43i2.02" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4314/wsa.v43i2.02</a></pub-id>
  30. Tacão M, Correia A, Henriques IS. Low prevalence of carbapenem-resistant bacteria in river water: resistance is mostly related to intrinsic mechanisms. Microb Drug Resist 2015;21:497–506. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1089/mdr.2015.0072" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1089/mdr.2015.0072</a></pub-id>
  31. Zaidi S, Zaheer R, Thomas K, Abeysekara S, Haight T, Saville L, Stuart-Edwards M, Zovoilis A, McAllister TA. Genomic characterization of carbapenem-resistant bacteria from beef cattle feedlots. Antibiotics 2023;12(6):960. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics12060960" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics12060960</a></pub-id>
  32. Hrenovic J, Durn G, Kazazic S, Dekic S, Seruga Music M. Untreated wastewater as a source of carbapenem-resistant bacteria to the riverine ecosystem. Water SA 2019;45:55–62. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.4314/wsa.v45i1.07" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4314/wsa.v45i1.07</a></pub-id>
  33. Hrenovic J, Goic-Barisic I, Kazazic S, Kovacic A, Ganjto M, Tonkic M. Carbapenem-resistant isolates of <em>Acinetobacter baumannii</em> in a municipal wastewater treatment plant. Euro Surveill 2016;21(15):30195. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2807/1560-7917.ES.2016.21.15.30195" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2807/1560-7917.ES.2016.21.15.30195</a></pub-id>
  34. Urase T, Goto S, Sato M. Monitoring carbapenem-resistant <em>Enterobacterales</em> in the environment to assess the spread in the community. Antibiotics 2022;11(7):917. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics11070917" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics11070917</a></pub-id>
  35. Dekić Rozman S, Butorac A, Bertoša R, Hrenović J, Markeš M. Loss of thermotolerance in antibiotic-resistant <em>Acinetobacter baumannii</em>. Int J Environ Health Res 2022;32:1581–93. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1080/09603123.2021.1898550" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/09603123.2021.1898550</a></pub-id>
  36. Li D, Yi J, Han G, Qiao L. MALDI-TOF mass spectrometry in clinical analysis and research. ACS Meas Sci Au 2022;2:385–404. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1021/acsmeasuresciau.2c00019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acsmeasuresciau.2c00019</a></pub-id>
  37. Hleba L, Hlebová M, Kováčik A, Čuboň J, Medo J. Carbapenemase producing <em>Klebsiella pneumoniae</em> (KPC): what is the best MALDI-TOF MS detection method. Antibiotics 2021;10(12):1549. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics10121549" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics10121549</a></pub-id>.
  38. Hrenovic J, Seruga Music M, Durn G, Dekic S, Hunjak B, Kisic I. Carbapenem-resistant <em>Acinetobacter baumannii</em> recovered from swine manure. Microb Drug Resist 2019;25:725–30. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1089/mdr.2018.0087" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1089/mdr.2018.0087</a></pub-id>
  39. Drk S, Puljko A, Dželalija M, Udiković-Kolić N. Characterization of third generation cephalosporin- and carbapenem-resistant <em>Aeromonas</em> isolates from municipal and hospital wastewater. Antibiotics 2023;12(3):513. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics12030513" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics12030513</a></pub-id>
  40. Shin HB, Yoon J, Lee Y, Kim MS, Lee K. Comparison of MALDI-TOF MS, housekeeping gene sequencing, and 16S rRNA gene sequencing for identification of <em>Aeromonas</em> clinical isolates. Yonsei Med J 2015;56:550–5. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3349/ymj.2015.56.2.550" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3349/ymj.2015.56.2.550</a></pub-id>
  41. Hrabák J, Chudácková E, Walková R. Matrix-assisted laser desorption ionization-time of flight (MALDITOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev 2013;26:103–14. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/CMR.00058-12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/CMR.00058-12</a></pub-id>
  42. Henriques IS, Araújo S, Azevedo JSN, Alves MS, Chouchani C, Pereira A, Correia A. Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal. Microb Drug Resist 2012;18:531–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1089/mdr.2012.0029" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1089/mdr.2012.0029</a></pub-id>
  43. Oliveira M, Leonardo IC, Nunes M, Silva AF, Barreto Crespo MT. Environmental and pathogenic carbapenem resistant bacteria isolated from a wastewater treatment plant harbour distinct antibiotic resistance mechanisms. Antibiotics 2021;10(9):1118. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics10091118" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics10091118</a></pub-id>
  44. Maguire M, Serna C, Serra NM, Kovarova A, Connor LO, Cahill N, Hooban B, DeLappe N, Brennan W, Devane G, Cormican M, Morris D, Coughlan SC, Gonzalez-zorn B, Burke LP. Spatiotemporal and genomic analysis of carbapenem resistance elements in <em>Enterobacterales</em> from hospital inpatients and natural water ecosystems of an Irish city. Microbiol Spectr 2025;13(1):e0090424. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/spectrum.00904-24" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/spectrum.00904-24</a></pub-id>
  45. Kehl K, Schallenberg A, Szekat C, Albert C, Sib E, Exner M, Zacharias N, Schreiber C, Parčina M, Bierbaum G. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment Sci Total Environ 2021;806(Pt 4):151339. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.scitotenv.2021.151339" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2021.151339</a></pub-id>
  46. Makowska N, Philips A, Dabert M, Nowis K, Koczura R, Mokracka J. Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome. Water Res 2019;170:115277. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.watres.2019.115277" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.watres.2019.115277</a></pub-id>
  47. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 15.0, 2025 [displayed 24 April 2025]. Available at <a href="https://www.eucast.org" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.eucast.org</a>
  48. Clinical and Laboratory Standards Institute. CLSI M100—Performance Standards for Antimicrobial Susceptibility Testing. 33<sup>rd</sup> ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2023.
  49. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2016–2017. Geneva: World Health Organization; 2017.
  50. Al-Zahrani IA. Routine detection of carbapenem-resistant gram-negative bacilli in clinical laboratories: a review of current challenges. Saudi Med J 2018;39:861–72. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.15537/smj.2018.9.22840" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15537/smj.2018.9.22840</a></pub-id>
  51. Rudresh SM, Ravi GS, Sunitha L, Hajira SN, Kalaiarasan E, Harish BN. Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. J Lab Physicians 2017;9:303–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.4103/jlp.jlp_138_16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4103/jlp.jlp_138_16</a></pub-id>
  52. Drieux L, Brossier F, Sougakoff W, Jarlier V. Phenotypic detection of extended-spectrum β-lactamase production in <em>Enterobacteriaceae</em>: review and bench guide. Clin Microbiol Infect 2008;14(Suppl 1):90–103. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/j.1469-0691.2007.01846.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1469-0691.2007.01846.x</a></pub-id>
  53. Noyal MJC, Menezes GA, Harish BN, Sujatha S, Parija SC. Simple screening tests for detection of carbapenemases in clinical isolates of nonfermentative gram-negative bacteria. Indian J Med Res 2009;129:707–12. PMID: <pub-id pub-id-type="pmid">19692754</pub-id>
  54. Tsai Y-M, Wang S, Chiu H-C, Kao C-Y, Wen L-L. Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing <em>Enterobacteriaceae</em>. BMC Microbiol 2020;20(1):315. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/s12866-020-02010-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12866-020-02010-3</a></pub-id>
  55. Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Futur Sci OA 2020;6(3):FSO438. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2144/fsoa-2019-0098" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2144/fsoa-2019-0098</a></pub-id>
  56. Pasteran F, Tijet N, Melano RG, Corso A. Simplified protocol for Carba NP test for enhanced detection of carbapenemase producers directly from bacterial cultures. J Clin Microbiol 2015;53:3908–11. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/JCM.02032-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/JCM.02032-15</a></pub-id>
  57. Bouslah Z. Carba NP test for the detection of carbapenemase-producing <em>Pseudomonas aeruginosa</em>. Med Mal Infect 2020;50:466–79. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.medmal.2019.12.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.medmal.2019.12.002</a></pub-id>
  58. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 25<sup>th</sup> Informational Supplement. CLSI Document M100-S25. Wayne (PA): Clinical and Laboratory Standards Institute; 2015.
  59. Silver LL. Rational approaches to antibacterial discovery: pre-genomic directed and phenotypic screening in Antibiotic discovery and development: In: Dougherty T, Pucci M, editors. Antibiotic discovery and development. Boston (MA): Springer; 2012. p. 33–75. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/978-1-4614-1400-1_2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-1-4614-1400-1_2</a></pub-id>
  60. Birnbaum J, Kahan FM, Kropp H, MacDonald JS. Carbapenems, a new class of beta-lactam antibiotics: discovery and development of imipenem/cilastatin. Am J Med 2000;78:3–21. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/0002-9343(85)90097-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0002-9343(85)90097-x</a></pub-id>
  61. Reygaert CW. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018;4:482–501. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3934/microbiol.2018.3.482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3934/microbiol.2018.3.482</a></pub-id>
  62. Sandner-Miranda L, Vinuesa P, Cravioto A, Morales-Espinosa R. The genomic basis of intrinsic and acquired antibiotic resistance in the genus <em>Serratia</em>. Front Microbiol 2018;9:828. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2018.00828" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2018.00828</a></pub-id>
  63. Lazim H, Salah AM, Slama N, Barkallah I, Ben Hassen A, Limam F. Biochemical detection of a metallo-β-lactamase in carbapenem resistant strain of <em>Streptomyces</em> sp. CN229 isolated from soil. Ann Microbiol 2007;57:515–9. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/BF03175348" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/BF03175348</a></pub-id>
  64. Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis 2016;3:15–21. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1177/2049936115621709" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/2049936115621709</a></pub-id>
  65. Brooke JS. New strategies against <em>Stenotrophomonas maltophilia</em>: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert Rev Anti Infect Ther 2014;12:1–4. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1586/14787210.2014.864553" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1586/14787210.2014.864553</a></pub-id>
  66. Mikhailovich V, Heydarov R, Zimenkov D, Chebotar I. <em>Stenotrophomonas maltophilia</em> virulence: a current view. Front Microbiol 2024;15:1385631. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2024.1385631" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2024.1385631</a></pub-id>
  67. Said MS, Tirthani E, Lesho E. <em>Stenotrophomonas Maltophilia</em>. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
  68. EUCAST. Expected resistant and susceptible phenotypes (ver. 1.2), 2023 [displayed 24. April 2025]. Available at <a href="https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes</a>
  69. Gatermann S, Das S, Dubreuil L, Giske CG, Kahlmeter G, Lina G, Lindemann C, MacGowan A, Meletiadis J, Rossolini GM, Turnidge J, Cantón R. Expected phenotypes and expert rules are important complements to antimicrobial susceptibility testing. Clin Microbiol Infect 2022;28:764–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.cmi.2022.03.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cmi.2022.03.007</a></pub-id>
  70. Tao S, Chen H, Li N, Wang T, Liang W. The spread of antibiotic resistance genes <em>in vivo</em> model. Can J Infect Dis Med Microbiol 2022;2022:3348695. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1155/2022/3348695" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2022/3348695</a></pub-id>
  71. Steed DB, Wang T, Raheja D, Waldman AD, Babiker A, Dhere T, Kraft CS, Woodworth MH. Gram-negative taxa and antimicrobial susceptibility after fecal microbiota transplantation for recurrent <em>Clostridioides difficile</em> infection. mSphere 2020:5(5):e00853–20. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/mSphere.00853-20" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/mSphere.00853-20</a></pub-id>
  72. Fondi M, Bacci G, Brilli M, Papaleo MC, Mengoni A, Vaneechoutte M, Dijkshoorn L, Fani R. Exploring the evolutionary dynamics of plasmids: the <em>Acinetobacter</em> pan-plasmidome. BMC Evol Biol 2010;10:59. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/1471-2148-10-59" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/1471-2148-10-59</a></pub-id>
  73. Acar Kirit H, Bollback JP, Lagator M. The Role of the environment in horizontal gene transfer. Mol Biol Evol 2022;39(11):msac220. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1093/molbev/msac220" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/molbev/msac220</a></pub-id>
  74. Brown CL, Maile-Moskowitz A, Lopatkin AJ, Xia K, Logan LK, Davis BC, Zhang L, Vikesland PJ, Pruden A. Selection and horizontal gene transfer underlie microdiversity-level heterogeneity in resistance gene fate during wastewater treatment. Nat Commun 2024;15(1):5412. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1038/s41467-024-49742-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41467-024-49742-8</a></pub-id>
  75. Michaelis C, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics 2023;12(2):328. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics12020328" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics12020328</a></pub-id>
  76. Abe K, Nomura N, Suzuki S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2021;96(5):fiaa031. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1093/FEMSEC/FIAA031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/FEMSEC/FIAA031</a></pub-id>
  77. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 2012;65:183–95. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/j.1574-695X.2012.00960.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-695X.2012.00960.x</a></pub-id>
  78. Suay-García B, Pérez-Gracia MT. Present and future of carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019;8(3):122. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics8030122" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics8030122</a></pub-id>
  79. Buehrle DJ, Shields RK, Clarke LG, Potoski BA, Clancy CJ, Hong Nguyen M. Carbapenem-resistant <em>Pseudomonas aeruginosa</em> bacteremia: risk factors for mortality and microbiologic treatment failure. Antimicrob Agents Chemother 2017;61(1):e01243–16. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/aac.01243-16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/aac.01243-16</a></pub-id>
  80. Bennett JE, Dolin R, Blaser MJ. Principles and Practice of Infectious Diseases. 9<sup>th</sup> ed. Amsterdam: Elsevier; 2019.
  81. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, Barbarisi A, Passavanti MB, Pace MC. Mechanisms of action of carbapenem resistance. Antibiotics 2022;11(3):421. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics11030421" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics11030421</a></pub-id>
  82. Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical epidemiology, risk factors, and control strategies of <em>Klebsiella pneumoniae</em> infection. Front Microbiol 2021;12:750662. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2021.750662" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2021.750662</a></pub-id>
  83. Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev 2014;27:241–63. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/CMR.00117-13" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/CMR.00117-13</a></pub-id>
  84. Castanheira M, Mendes RE, Gales AC. Global epidemiology and mechanisms of resistance of <em>Acinetobacter baumannii</em>-calcoaceticus complex. Clin Infect Dis 2023;76(Suppl 2):S166–78. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1093/cid/ciad109" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/cid/ciad109</a></pub-id>
  85. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL. The role of ISAba1 in expression of OXA carbapenemase genes in <em>Acinetobacter baumannii</em>. FEMS Microbiol Lett 2006;258:72–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/j.1574-6968.2006.00195.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1574-6968.2006.00195.x</a></pub-id>
  86. Jin L, Wang R, Wang X, Wang Q, Zhang Y, Yin Y, Wang H. Emergence of <em>mcr-</em>1 and carbapenemase genes in hospital sewage water in Beijing, China. J Antimicrob Chemother 2018;73:84–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1093/jac/dkx355" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1093/jac/dkx355</a></pub-id>
  87. Centers for Disease Control and Prevention. Antimicrobial Resistance Threats in the United States, 2021–2022. Atlanta (GA): U.S. Department of Health and Human Services, CDC; 2024.
  88. Hu H, Lou Y, Feng H, Tao J, Shi W, Ni S, Pan Q, Ge T, Shen P, Zhong Z, Xiao Y, Qu T. Molecular characterization of carbapenem-resistant <em>Acinetobacter baumannii</em> isolates among intensive care unit patients and environment. Infect Drug Resist 2022;15:1821–9. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2147/IDR.S349895" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2147/IDR.S349895</a></pub-id>
  89. Lerner A, Adler A, Abu-Hanna J, Meitus I, Navon-Venezia S, Carmeli Y. Environmental contamination by carbapenem-resistant <em>Enterobacteriaceae</em>. J Clin Microbiol 2013;51:177–81. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/JCM.01992-12" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/JCM.01992-12</a></pub-id>
  90. Baleivanualala SC, Matanitobua S, Samisoni Y, Soqo V, Smita S, Mailulu J, Nabose I, Lata A, Shayam C, Sharma R, Wilson D, Crump JA, Ussher JE. Environmental contamination with carbapenem resistant <em>Acinetobacter baumannii</em> in healthcare settings in Fiji: a potential source of infection. Front Cell Infect Microbiol 2024;14:1429443. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fcimb.2024.1429443" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fcimb.2024.1429443</a></pub-id>
  91. Chia PY, Sengupta S, Kukreja A, Ponnampalavanar SSL, Ng OT, Marimuthu K. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob Resist Infect Control 2020;9(1):29. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/s13756-020-0685-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s13756-020-0685-1</a></pub-id>
  92. Mousa M, Schwartz D, Carmeli Y, Nutman A. Droplet aerosol dissemination of carbapenem-resistant <em>Acinetobacter baumannii</em> surrounding ventilated patients. Infect Control Hosp Epidemiol 2019;40:365–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1017/ice.2018.335" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/ice.2018.335</a></pub-id>
  93. Pustijanac E, Hrenović J, Vranić-Ladavac M, Močenić M, Karčić N, Lazarić Stefanović L, Hrstić I, Lončarić J, Šeruga Musić M, Drčelić M, Majstorović D, Kovačić I. Dissemination of clinical <em>Acinetobacter baumannii</em> isolate to hospital environment during the COVID-19 pandemic. Pathogens 2023;12(3):410. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/pathogens12030410" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/pathogens12030410</a></pub-id>
  94. Gonçalves DLDR, Chang MR, Nobrega GD, Venancio FA, Higa Júnior MG, Fava WS. Hospital sewage in Brazil: a reservoir of multidrug-resistant carbapenemase-producing <em>Enterobacteriaceae</em>. Braz J Biol 2024;84:e277750. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1590/1519-6984.277750" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1590/1519-6984.277750</a></pub-id>
  95. Bedenić B, Siroglavić M, Slade M, Šijak D, Dekić S, Šeruga Musić M, Godan-Hauptman A, Hrenović J. Comparison of clinical and sewage isolates of <em>Acinetobacter baumannii</em> from two long-term care facilities in Zagreb; mechanisms and routes of spread. Arch Microbiol 2020;202:361–8. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s00203-019-01750-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00203-019-01750-9</a></pub-id>
  96. Pereira AL, de Oliveira PM, Faria-Junior C, Alves EG, de Castro E Caldo Lima GR, da Costa Lamounier TA, Haddad R, de Araújo WN. Environmental spreading of clinically relevant carbapenem-resistant gram-negative bacilli : the occurrence of bla KPC-or-NDM strains relates to local hospital activities. BMC Microbiol 2022;22(1):6. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1186/s12866-021-02400-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12866-021-02400-1</a></pub-id>
  97. Sahoo S, Sahoo RK, Gaur M, Behera DU, Sahu A, Das A, Dey S, Dixit S, Subudhi E. Environmental carbapenem-resistant <em>Acinetobacter baumannii</em> in wastewater receiving urban river system of eastern India: a public health threat. Int J Environ Sci Technol 2022;20:9901–10. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1007/s13762-022-04569-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s13762-022-04569-y</a></pub-id>
  98. Hrenovic J, Ivankovic T, Ivekovic D, Repec S, Stipanicev D, Ganjto M. The fate of carbapenem-resistant bacteria in a wastewater treatment plant. Water Res 2017;126:232–9. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.watres.2017.09.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.watres.2017.09.007</a></pub-id>
  99. Higgins PG, Hrenovic J, Seifert H, Dekic S. Characterization of <em>Acinetobacter baumannii</em> from water and sludge line of secondary wastewater treatment plant. Water Res 2018;140:261–7. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.watres.2018.04.057" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.watres.2018.04.057</a></pub-id>
  100. Shin H, Kim Y, Han D, Hur HG. Emergence of high level carbapenem and extensively drug resistant <em>Escherichia coli</em> ST746 producing NDM-5 in influent of wastewater treatment plant, Seoul, South Korea. Front Microbiol 2021;12:645411. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2021.645411" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2021.645411</a></pub-id>
  101. Araújo S, Sousa M, Tacão M, Baraúna RA, Silva A, Ramos R, Alves A, Manaia CM, Henriques I. Carbapenem-resistant bacteria over a wastewater treatment process: carbapenem-resistant <em>Enterobacteriaceae</em> in untreated wastewater and intrinsically-resistant bacteria in final effluent. Sci Total Environ 2021;782:146892. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.scitotenv.2021.146892" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2021.146892</a></pub-id>
  102. Mathys DA, Mollenkopf DF, Feicht SM, Adams RJ, Albers AL, Stuever DM, Grooters SV, Ballash GA, Daniels JB, Wittum TE. Carbapenemase-producing <em>Enterobacteriaceae</em> and <em>Aeromonas</em> spp. present in wastewater treatment plant effluent and nearby surface waters in the US. PLoS One 2018;14(6):e0218650. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1371/journal.pone.0218650" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0218650</a></pub-id>
  103. Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B, Flach CF, Fick J, Kristiansson E, Tysklind M, Larsson DGJ. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci Total Environ 2016;572:697–712. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.scitotenv.2016.06.228" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2016.06.228</a></pub-id>
  104. Lepuschitz S, Schill S, Stoeger A, Pekard-Amenitsch S, Huhulescu S, Inreiter N, Hartl R, Kerschner H, Sorschag S, Springer B, Brisse S, Allerberger F, Mach RL, Ruppitsch W. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant <em>Klebsiella pneumoniae</em> isolates from Austrian rivers and clinical isolates from hospitals. Sci Total Environ 2019;662:227–35. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.scitotenv.2019.01.179" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2019.01.179</a></pub-id>
  105. Teixeira P, Tacão M, Pureza L, Gonçalves J, Silva A, Cruz-Schneider MP, Henriques I. Occurrence of carbapenemase-producing <em>Enterobacteriaceae</em> in a Portuguese river: bla<sub>NDM</sub>, bla<sub>KPC</sub> and bla<sub>GES</sub> among the detected genes. Environ Pollut 2020;260:113913. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.envpol.2020.113913" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envpol.2020.113913</a></pub-id>
  106. Zurfluh K, Hächler H, Nüesch-Inderbinen M, Stephan R. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing <em>Enterobacteriaceae</em> isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 2013;79:3021–6. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/AEM.00054-13" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/AEM.00054-13</a></pub-id>
  107. Serwecińska L, Kiedrzyńska E, Kiedrzyński M. A catchment-scale assessment of the sanitary condition of treated wastewater and river water based on fecal indicators and carbapenem-resistant <em>Acinetobacter</em> spp. Sci Total Environ 2021;750:142266. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.scitotenv.2020.142266" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2020.142266</a></pub-id>
  108. Harmon DE, Miranda OA, McCarley A, Eshaghian M, Carlson N, Ruiz C. Prevalence and characterization of carbapenem-resistant bacteria in water bodies in the Los Angeles–Southern California area. Microbiologyopen 2019;8(4):e00692. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1002/mbo3.692" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/mbo3.692</a></pub-id>
  109. Paschoal RP, Campana EH, Corrêa LL, Montezzi LF, Barrueto LRL, da Silva IR, Bonelli RR, Castro LS, Picão RC. Concentration and variety of carbapenemase producers in recreational coastal waters showing distinct levels of pollution. Antimicrob Agents Chemother 2017;61(12):e01963–17. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1128/aac.01963-17" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/aac.01963-17</a></pub-id>
  110. Andrade VC, Caetano T, Mendo S, de Oliveira AJFC. Carbapenem resistant <em>Enterobacteriaceae</em> from port areas in São Paulo State (Brazil): isolation and molecular characterization. Mar Pollut Bull 2020;159:111329. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.marpolbul.2020.111329" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.marpolbul.2020.111329</a></pub-id>
  111. Hrenovic J, Durn G, Seruga Music M, Dekic S, Troskot-Corbic T, Skoric D. Extensively and multi drug-resistant <em>Acinetobacter baumannii</em> recovered from technosol at a dump site in Croatia. Sci Total Environ 2017;607–608:1049–55. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.scitotenv.2017.07.108" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2017.07.108</a></pub-id>
  112. Shi X, Li Y, Yang Y, Shen Z, Cai C, Wang Y, Walsh TR, Shen J, Wu Y, Wang S. High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China. J Hazard Mater 2020;406:124298. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jhazmat.2020.124298" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jhazmat.2020.124298</a></pub-id>
  113. Grönthal T, Österblad M, Eklund M, Jalava J, Nykäsenoja S, Pekkanen K, Rantala M. Sharing more than friendship – transmission of NDM-5 ST167 and CTX-M-9 ST69 <em>Escherichia coli</em> between dogs and humans in a family, Finland, 2015. Euro Surveill 2018;23(27):1700497. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2807/1560-7917.ES.2018.23.27.1700497" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2807/1560-7917.ES.2018.23.27.1700497</a></pub-id>
  114. Gentilini F, Turba ME, Pasquali F, Mion D, Romagnoli N, Zambon E, Terni D, Peirano G, Pitout JDD, Parisi A, Sambri V, Zanoni RG. Hospitalized pets as a source of carbapenem-resistance. Front Microbiol 2018;9:2872. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2018.02872" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2018.02872</a></pub-id>
  115. Ewers C, Klotz P, Leidner U, Stamm I, Prenger-Berninghoff E, Göttig S, Semmler T, Scheufen S. OXA-23 and ISAba1–OXA-66 class D β-lactamases in <em>Acinetobacter baumannii</em> isolates from companion animals. Int J Antimicrob Agents 2017;49:37–44. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.ijantimicag.2016.09.033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijantimicag.2016.09.033</a></pub-id>
  116. Klotz P, Higgins PG, Schaubmar AR, Failing K, Leidner U, Seifert H, Scheufen S, Semmler T, Ewers C. Seasonal occurrence and carbapenem susceptibility of bovine <em>Acinetobacter baumannii</em> in Germany. Front Microbiol 2019;10:272. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2019.00272" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2019.00272</a></pub-id>
  117. Daoud Z, Rolain JM. Editorial: “One Health” approach for revealing reservoirs and transmission of antimicrobial resistance. Front Microbiol 2023;14:1170407. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2023.1170407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2023.1170407</a></pub-id>
  118. Hamza E, Dorgham SM, Hamza DA. Carbapenemase-producing <em>Klebsiella pneumoniae</em> in broiler poultry farming in Egypt. J Glob Antimicrob Resist 2016;7:8–10. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jgar.2016.06.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jgar.2016.06.004</a></pub-id>
  119. Wilharm G, Skiebe E, Higgins PG, Poppel MT, Blaschke U, Leser S, Heider C, Heindorf M, Brauner P, Jäckel U, Böhland K, Cuny C, Łopińska A, Kaminski P, Kasprzak M, Bochenski M, Ciebiera O, Tobółka M, Żołnierowicz KM, Siekiera J, Seifert H, Gagné S, Salcedo SP, Kaatz M, Layer F, Bender JK, Fuchs S, Semmler T, Pfeifer Y, Jerzak L. Relatedness of wildlife and livestock avian isolates of the nosocomial pathogen <em>Acinetobacter baumannii</em> to lineages spread in hospitals worldwide. Environ Microbiol 2017;19:4349–64. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1111/1462-2920.13931" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/1462-2920.13931</a></pub-id>
  120. EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on Carbapenem resistance in food animal ecosystems. EFSA J 2013;11(12):3501. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.2903/j.efsa.2013.3501" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2903/j.efsa.2013.3501</a></pub-id>
  121. Liu B-T, Zhang X-Y, Wan S-W, Hao J-J, Jiang R-D, Song F-J. Characteristics of carbapenem-resistant <em>Enterobacteriaceae</em> in ready-to-eat vegetables in China. Front Microbiol 2018;9:1147. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3389/fmicb.2018.01147" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fmicb.2018.01147</a></pub-id>
  122. Jiménez-Belenguer AI, Ferrús MA, Hernández M, García-Hernández J, Moreno Y, Castillo MÁ. Prevalence and characterization of beta-lactam and carbapenem-resistant bacteria isolated from organic fresh produce retailed in eastern Spain. Antibiotics 2023;12(2):387. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/antibiotics12020387" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/antibiotics12020387</a></pub-id>
  123. Espinal P, Martí S, Vila J. Effect of biofilm formation on the survival of <em>Acinetobacter baumannii</em> on dry surfaces. J Hosp Infect 2012;80:56–60. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.jhin.2011.08.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jhin.2011.08.013</a></pub-id>
  124. Ferreira C, Luzietti L, Ribeirinho-Soares S, Nunes OC, Vaz-Moreira I, Manaia CM. Survival of clinical and environmental carbapenem-resistant <em>Klebsiella pneumoniae</em> ST147 in surface water. Environ Res J 2023;237(Pt 1):116928. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.envres.2023.116928" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envres.2023.116928</a></pub-id>
  125. Dekic S, Hrenovic J, Durn G, Venter C. Survival of extensively- and pandrug-resistant isolates of <em>Acinetobacter baumannii</em> in soils. Appl Soil Ecol 2020;147:103396. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.1016/j.apsoil.2019.103396" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.apsoil.2019.103396</a></pub-id>
  126. Kittinger C, Kirschner A, Lipp M, Baumert R, Mascher F, Farnleitner AH, Zarfel GE. Antibiotic resistance of <em>Acinetobacter</em> spp. isolates from the river Danube: susceptibility stays high. Int J Environ Res Public Health 2017;15(1):52. doi: <pub-id pub-id-type="doi"><a href="https://doi.org/10.3390/ijerph15010052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/ijerph15010052</a></pub-id>
DOI: https://doi.org/10.2478/aiht-2025-76-3956 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 87 - 101
Submitted on: Feb 1, 2025
Accepted on: May 1, 2025
Published on: Jun 30, 2025
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Blanka Dadić, Jasna Hrenović, Tomislav Ivanković, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution 4.0 License.