Have a personal or library account? Click to login
Comparison of different disinfection protocols against contamination of ceramic surfaces with Klebsiella pneumoniae biofilm Cover

Comparison of different disinfection protocols against contamination of ceramic surfaces with Klebsiella pneumoniae biofilm

Open Access
|Dec 2024

References

  1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589–603. doi: 10.1128/CMR.11.4.589
  2. Vickery K, Deva A, Jacombs A, Allan J, Valente P, Gosbell IB. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J Hosp Infect 2012;80:52–5. doi: 10.1016/j.jhin.2011.07.007
  3. Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol Mol Biol Rev 2016;80:629–61. doi: 10.1128/MMBR.00078-15
  4. Vickery K. Special issue: Microbial biofilms in healthcare: formation, prevention and treatment. Materials 2019;12(12):2001. doi: 10.3390/ma12122001
  5. Öztürk A, Güzel ÖT, Abdulmajed O, Erdoğan M, Kozan R, Çağlar K, Kalkanci A. Evaluation of the bactericidal activity of some disinfectant agents against Carbapenem -resistant Klebsiella pneumoniae isolates. Int J Environ Health Eng 2020;2020:1–6. doi: 10.4103/ijehe. ijehe_15_20
  6. Elekhnawy EA, Sonbol FI, Elbanna TE, Abdelaziz AA. Evaluation of the impact of adaptation of Klebsiella pneumoniae clinical isolates to benzalkonium chloride on biofilm formation. Egypt J Med Hum Genet 2021;22:51. doi: 10.1186/s43042-021-00170-z
  7. Abuzaid A, Hamouda A, Amyes SGB. Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect 2012;81:87–91. doi: 10.1016/j.jhin.2012.03.003
  8. Piletić K, Kovač B, Perčić M, Žigon J, Broznić D, Karleuša L, Lučić Blagojević S, Oder M, Gobin I. Disinfecting action of gaseous ozone on OXA-48-producing Klebsiella pneumoniae biofilm in vitro. Int J Environ Res Public Health 2022;19(10):6177. doi: 10.3390/ijerph19106177
  9. Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V, Salvia A, Varaldo PE. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 2017;123:1003–18. doi: 10.1111/jam.13533
  10. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 2011;27:1017– 32. doi: 10.1080/08927014.2011.626899
  11. Singla S, Harjai K, Chhibber S. Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. J Antibiot (Tokyo) 2013;66:61–6. doi: 10.1038/ja.2012.101
  12. Chapman JS. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegrad 2003;51:271–6. doi: 10.1016/S0964-8305(03)00044-1
  13. Barber OW, Hartmann EM. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies. Crit Rev Environ Sci Technol 2022;52:2691–719. doi: 10.1080/10643389.2021.1889284
  14. Subhadra B, Kim DH, Woo K, Surendran S, Choi CH. Control of biofilm formation in healthcare: Recent advances exploiting quorumsensing interference strategies and multidrug efflux pump inhibitors. Materials 2018;11(9):1676. doi: 10.3390/ma11091676
  15. Maillard JY, Centeleghe I. How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control 2023;12(1):95. doi: 10.1186/s13756-023-01290-4
  16. Ni L, Zhang Z, Shen R, Liu X, Li X, Chen B, Wu X, Li H, Xie X, Huang S. Disinfection strategies for carbapenem-resistant Klebsiella pneumoniae in a healthcare facility. Antibiotics 2022;11(6):736. doi: 10.3390/antibiotics11060736
  17. Oleksy-Wawrzyniak M, Junka A, Brożyna M, Paweł M, Kwiek B, Nowak M, Mączyńska B, Bartoszewicz M. The in vitro ability of Klebsiella pneumoniae to form biofilm and the potential of various compounds to eradicate it from urinary catheters. Pathogens 2022;11(1):42. doi: 10.3390/pathogens11010042
  18. Kim M, Weigand MR, Oh S, Hatt JK, Krishnan R, Tezel U, Pavlostathis SG, Konstantinidisa KT. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance 2018;84(17):e01201–18. doi: 10.1128/AEM.01201-18
  19. Maillard JY, Bloomfield S, Coelho JR, Collier P, Cookson B, Fanning S, Hill A, Hartemann P, McBain AJ, Oggioni M, Sattar S, Schweizer HP, Threlfall J. Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb Drug Resist 2013;19:344–54. doi: 10.1089/mdr.2013.0039
  20. European Commission. Scientific Committee on Emerging and Newly-Identified Health Risks. Assessment of the Antibiotic Resistance Effects of Biocides, 2009 [displayed 5 December 2024]. January. Available at chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pd
  21. Magiorakos AP, Burns K, Rodríguez Baño J, Borg M, Daikos G, Dumpis U, Lucet JC, Moro ML, Tacconelli E, Simonsen GS, Szilágyi E, Voss A, Weber JT. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: Guidance from the European Centre for Disease Prevention and Control. Antimicrob Resist Infect Control 2017;6:113. doi: 10.1186/s13756-017-0259-z
  22. Abreu AC, Tavares RR, Borges A, Mergulhão F, Simões M. Current and emergent strategies for disinfection of hospital environments. J Antimicrob Chemother 2013;68:2718–32. doi: 10.1093/jac/dkt281
  23. Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol 2021;12:750622. doi: 10.3389/fmicb.2021.750662
  24. Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities. Infect Dis Clin North Am 2016;30:609–37. doi: 10.1016/j. idc.2016.04.002
  25. Rutala WA, Weber DJ, Healthcare Infection Control Practices Advisory Committee. Guideline for Disinfection and Sterilization in Healthcare Facilities. Centers for Disease Control and Prevention, 2008 [displayed 5 December 2024]. January. Available at chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cdc.gov/infection-control/media/pdfs/guideline-disinfection-h.pdf
  26. Damani N. Priručnik o prevenciji i kontroli infekcija [Infection prevention and control manual, in Croatian]. Zagreb: Medicinska naklada; 2019.
  27. Fontes B, Cattani Heimbecker AM, de Souza Brito G, Costa SF, van der Heijden IM, Levin AS, Rasslan S. Effect of low-dose gaseous ozone on pathogenic bacteria. BMC Infect Dis 2012;12:358. doi: 10.1186/1471-2334-12-358
  28. Megahed A, Aldridge B, Lowe J. The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS One 2018;13(5):e0196555. doi: 10.1371/journal.pone.0196555
  29. Giuliani G, Ricevuti G, Galoforo A, Franzini M. Microbiological aspects of ozone: bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Ther 2018;3(3):7971. doi: 10.4081/ozone.2018.7971
  30. Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control 2008;36:559–63. doi: 10.1016/j.ajic.2007.10.021
  31. Boch T, Tennert C, Vach K, Al-Ahmad A, Hellwig E, Polydorou O. Effect of gaseous ozone on Enterococcus faecalis biofilm -an in vitro study. Clin Oral Investig 2016;20:1733–9. doi: 10.1007/s00784-015-1667-1
  32. Piletić K, Kovač B, Planinić M, Vasiljev V, Brčić Karačonji I, Žigon J, Gobin I, Oder M. Combined biocidal effect of gaseous ozone and citric acid on Acinetobacter baumannii biofilm formed on ceramic tiles and polystyrene as a novel approach for infection prevention and control. Processes 2022;10(9):1788. doi: 10.3390/pr10091788
  33. Kim HW, Lee NY, Park SM, Rhee MS. A fast and effective alternative to a high-ethanol disinfectant: Low concentrations of fermented ethanol, caprylic acid, and citric acid synergistically eradicate biofilm-embedded methicillin-resistant Staphylococcus aureus. Int J Hyg Environ Health 2020;229:113586. doi: 10.1016/j.ijheh.2020.113586
  34. Park KM, Yoon SG, Choi TH, Kim HJ, Park KJ, Koo M.The bactericidal effect of a combination of food grade compounds and their application as alternative antibacterial agent for food contact surfaces. Foods 2020;9(1):59. doi: 10.3390/foods9010059
  35. Reichel M, Schlicht A, Ostermeyer C, Kampf G. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infect Dis 2014;14(1):292. doi: 10.1186/1471-2334-14-292
  36. Sundheim G, Langsrud S, Heir E, Holck AL. Bacterial resistance to disinfectants containing quaternary ammonium compounds. Int Biodeterior Biodegrad 1998;41:235–9. doi: 10.1016/S0964-8305(98)00027-4
  37. Kampf G. Adaptive microbial response to low-level benzalkonium chloride exposure. J Hosp Infect 2018;100(3):e1–22. doi: 10.1016/j.jhin.2018.05.019
  38. Cho G-L, Ha J-W. Synergistic effect of citric acid and xenon light for inactivating foodborne pathogens on spinach leaves. Food Res Int 2021;142:110210. doi: 10.1016/j.foodres.2021.110210
  39. Jung YJ, Oh BS, Kang J-W. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores. Water Res 2008;42:1613–21. doi: 10.1016/j.watres.2007.10.008
  40. Britton HC, Draper M, Talmadge JE. Antimicrobial efficacy of aqueous ozone in combination with short chain fatty acid buffers. Infect Prev Pract 2020;2(1):100032. doi: 10.1016/j.infpip.2019.100032
  41. Vankerckhoven E, Verbessem B, Crauwels S, Declerck P, Muylaert K, Willems KA, Reiders H. Exploring the potential synergistic effects of chemical disinfectants and UV on the inactivation of free-living bacteria and treatment of biofilms in a pilot-scale system. Water Sci Technol 2011;64:1247–53. doi: 10.2166/wst.2011.718
  42. Ha J-H, Jeong S-H, Ha S-D. Synergistic effects of combined disinfection using sanitizers and uv to reduce the levels of Staphylococcus aureus in oyster mushrooms. J Appl Biol Chem 2011;54:447–53. doi: 10.3839/jksabc.2011.069
  43. European Committee for Standardization (CEN). EN 13727:2015. Chemical disinfectants. In: Quantitative suspension test for the Evaluation of Bactericidal Activity for Instruments Used in the Medical Area. Test Method and Requirements (Phase 2/Step 1). Brussels: CEN; 2015.
  44. Perla Filippini CR. Methicillin resistance, biofilm formation and resistance to benzalkonium chloride in Staphylococcus aureus clinical isolates. Clin Microbiol Open Access 2012;2(6):1000121. doi: 10.4172/2327-5073.1000121
  45. Bialoszewski D, Pietruczuk-Padzik A, Kalicinska A, Bocian E, Czajkowska M, Bukowska B, Tyski S. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa bioflms. Med Sci Monit 2011;17:BR339–44. doi: 10.12659/msm.882044
  46. Kovač B, Piletić K, Kovačević Ganić N, Gobin I. The effectiveness of benzalkonium chloride as an active compound on selected foodborne pathogens biofilm. Hygiene 2022;2:226–35. doi: 10.3390/hygiene2040020
  47. Nicholas R, Dunton P, Tatham A, Fielding L. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes. J Appl Microbiol 2013;115:555–64. doi: 10.1111/jam.12239
DOI: https://doi.org/10.2478/aiht-2024-75-3920 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 289 - 296
Submitted on: Nov 1, 2024
|
Accepted on: Dec 1, 2024
|
Published on: Dec 29, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Kaća Piletić, Silvestar Mežnarić, Eli Keržić, Martina Oder, Ivana Gobin, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.