Long JZ, Cravatt BF. The metabolic hydrolases and their Functions in mammalian physiology and disease. Chem Rev 2011;111:6022–63. doi: 10.1021/cr200075y
Buller RB, Townsend CA. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Proc Natl Acad Sci U S A 2013;110(8):E653–61. doi: 10.1073/pnas.1221050110
Kienesberger PC, Oberer M, Lass A, Zechner R. Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 2009;50(Suppl):S63–8. doi: 10.1194/jlr.R800082-JLR200
Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ. Characterization of the human patatin-like phospholipase family. J Lipid Res 2006;47:1940–9. doi: 10.1194/jlr.M600185-JLR200
Rydel TJ, Williams JM, Krieger E, Moshiri F, Stallings WC, Brown SM, Pershing JC, Purcell JP, Alibhai MF. The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 2003;42:6696–708. doi: 10.1021/bi027156r
Wu J, Wu Q, Yang D, Zhou M, Xu J, Wen Q, Cui Y, Bai Y, Xu S, Wang Z, Wang S. Patatin primary structural properties and effects on lipid metabolism. Food Chem 2021;344:128661. doi: 10.1016/j.foodchem.2020.128661
Wijeyesakere SJ, Richardson RJ, Stuckey JA. Crystal structure of patatin-17 in complex with aged and non-aged organophosphorus compounds. PLoS One 2014;9(9):e108245. doi: 10.1371/journal.pone.0108245
Kossiakoff AA, Spencer SA. Direct determination of the protonation states of aspartic acid-102 and Histidine-57 in the tetrahedral intermediate of the serine proteases: neutron, structure of trypsin. Biochemistry 1981;20:6462–74. doi: 10.1021/bi00525a027
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015;56:1643–68. doi: 10.1194/jlr.R058701
Holmes R. Comparative studies of adipose triglyceride lipase genes and proteins: an ancient gene in vertebrate evolution. Open Access Bioinformatics 2012;4:15–29. doi: 10.2147/OAB.S27508
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res 2011;50:152–92. doi: 10.1016/j.plipres.2010.12.001
Pingitore P, Romeo S. The role of PNPLA3 in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:900–6. doi: 10.1016/j.bbalip.2018.06.018
Malley KR, Koroleva O, Miller I, Sanishvili R, Jenkins CM, Gross RW, Korolev S. The structure of iPLA2β reveals dimeric active sites and suggests mechanisms of regulation and localization. Nat Commun 2018;9(1):765. doi: 10.1038/s41467-018-03193-0
Chang PA, Sun YJ, Huang FF, Qin WZ, Chen YY, Zeng X, Wu YJ. Identification of human patatin-like phospholipase domain-containing protein 1 and a mutant in human cervical cancer HeLa cells. Mol Biol Rep 2013;40:5597–605. doi: 10.1007/s11033-013-2661-9
Chang PA, Han LP, Sun LX, Huang FF. Identification mouse patatin-like phospholipase domain containing protein 1 as a skin-specific and membrane-associated protein. Gene 2016;591:344–50. doi: 10.1016/j.gene.2016.06.012
Murugesan S, Goldberg EB, Dou E, Brown WJ. Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases. PLoS One 2013;8(5):e64950. doi: 10.1371/journal.pone.0064950
Kien B, Grond S, Haemmerle G, Lass A, Eichmann TO, Radner FPW. ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J Lipid Res 2018;59:2360–7. doi: 10.1194/jlr.M089771
Onal G, Kutlu O, Ozer E, Gozuacik D, Karaduman A, Dokmeci Emre S. Impairment of lipophagy by PNPLA1 mutations causes lipid droplet accumulation in primary fibroblasts of Autosomal Recessive Congenital Ichthyosis patients. J Dermatol Sci 2019;93:50–7. doi: 10.1016/j.jdermsci.2018.11.013
Ohno Y, Nara A, Nakamichi S, Kihara A. Molecular mechanism of the ichthyosis pathology of Chanarin-Dorfman syndrome: Stimulation of PNPLA1-catalyzed ω-O-acylceramide production by ABHD5. J Dermatol Sci 2018;92:245–53. doi: 10.1016/j.jdermsci.2018.11.005
Grall A, Guaguère E, Planchais S, Grond S, Bourrat E, Hausser I, Hitte C, Le Gallo M, Derbois C, Kim GJ, Lagoutte L, Degorce-Rubiales F, Radner FP, Thomas A, Küry S, Bensignor E, Fontaine J, Pin D, Zimmermann R, Zechner R, Lathrop M, Galibert F, André C, Fischer J. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet 2012;44:140–7. doi: 10.1038/ng.1056
Hirabayashi T, Anjo T, Kaneko A, Senoo Y, Shibata A, Takama H, Yokoyama K, Nishito Y, Ono T, Taya C, Muramatsu K, Fukami K, Muñoz-Garcia A, Brash AR, Ikeda K, Arita M, Akiyama M, Murakami M. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun 2017;8:14609. doi: 10.1038/ncomms14609
Grond S, Eichmann TO, Dubrac S, Kolb D, Schmuth M, Fischer J, Crumrine D, Elias PM, Haemmerle G, Zechner R, Lass A, Radner FPW. PNPLA1 deficiency in mice and humans leads to a defect in the synthesis of omega-O-acylceramides. J Invest Dermatol 2017;137:394–402. doi: 10.1016/j.jid.2016.08.036
Ohno Y, Kamiyama N, Nakamichi S, Kihara A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat Commun 2017;8:14610. doi: 10.1038/ncomms14610
Murakami M, Yamamoto K, Taketomi Y. Phospholipase A2 in skin biology: new insights from gene-manipulated mice and lipidomics. Inflamm Regen 2018;38:31. doi: 10.1186/s41232-018-0089-2
Radner FP, Grond S, Haemmerle G, Lass A, Zechner R. Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease. Dermatoendocrinology 2011;3:77–83. doi: 10.4161/derm.3.2.15472
Lake AC, Sun Y, Li JL, Kim JE, Johnson JW, Li D, Revett T, Shih HH, Liu W, Paulsen JE, Gimeno RE. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J Lipid Res 2005;46:2477–87. doi: 10.1194/jlr.M500290-JLR200
Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 2006;7:106–13. doi: 10.1038/sj.embor.7400559
Cornaciu I, Boeszoermenyi A, Lindermuth H, Nagy HM, Cerk IK, Ebner C, Salzburger B, Gruber A, Schweiger M, Zechner R, Lass A, Zimmermann R, Oberer M. The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively. PLoS ONE 2011;6(10):e26349. doi: 10.1371/journal.pone.0026349
Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta 2009;1791:494–500. doi: 10.1016/j.bbalip.2008.10.005
Schreiber R, Xie H, Schweiger M. Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:880–99. doi: 10.1016/j.bbalip.2018.10.008
Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 2004;279:48968–75. doi: 10.1074/jbc.M407841200
Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 2011;50:14–27. doi: 10.1016/j.plipres.2010.10.004
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. FAT SIGNALS - lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012;15:279–91. doi: 10.1016/j.cmet.2011.12.018
Schneider G, Neuberger G, Wildpaner M, Tian S, Berezovsky I, Eisenhaber F. Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinformatics 2006;7:164. doi: 10.1186/1471-2105-7-164
Taschler U, Schreiber R, Chitraju C, Grabner GF, Romauch M, Wolinski H, Haemmerle G, Breinbauer R, Zechner R, Lass A, Zimmermann R. Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells. Biochim Biophys Acta 2015;1851:937–45. doi: 10.1016/j.bbalip.2015.02.017
Patel R, Santoro A, Hofer P, Tan D, Oberer M, Nelson AT, Konduri S, Siegel D, Zechner R, Saghatelian A, Kahn BB. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 2022;606:968–75. doi: 10.1038/s41586-022-04787-x
Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 2009;297(2):E289–96. doi: 10.1152/ajpendo.00099.200
Kulminskaya N, Oberer M. Protein-protein interactions regulate the activity of Adipose Triglyceride Lipase in intracellular lipolysis. Biochimie 2020;169:62–8. doi: 10.1016/j.biochi.2019.08.004
Eichmann TO, Kumari M, Haas JT, Farese RV Jr, Zimmermann R, Lass A, Zechner R. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 2012;287:41446–57. doi: 10.1074/jbc.M112.400416
Yang A, Mottillo EP. Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020;477:985–1008. doi: 10.1042/BCJ20190468
Nagy HM, Paar M, Heier C, Moustafa T, Hofer P, Haemmerle G, Lass A, Zechner R, Oberer M, Zimmermann R. Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A. Biochim Biophys Acta 2014;1841:588–94. doi: 10.1016/j.bbalip.2014.01.005
Yin H, Li W, Mo L, Deng S, Lin W, Ma C, Luo Z, Luo C, Hong H. Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway. J Cell Mol Med 2021;25:3963–75. doi: 10.1111/jcmm.16349
Liu X, Liang Y, Song R, Yang G, Han J, Lan Y, Pan S, Zhu M, Liu Y, Wang Y, Meng F, Cui Y, Wang J, Zhang B, Song X, Lu Z, Zheng T, Liu L. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer 2018;17(1):90. doi: 10.1186/s12943-018-0838-5
Liu M, Yu X, Lin L, Deng J, Wang K, Xia Y, Tang X, Hong H. ATGL promotes the proliferation of hepatocellular carcinoma cells via the p-AKT signaling pathway. J Biochem Mol Toxicol 2019;33(11):e22391. doi: 10.1002/jbt.22391
Li P, Lu M, Shi J, Gong Z, Hua L, Li Q, Lim B, Zhang XH, Chen X, Li S, Shultz LD, Ren G. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat Immunol 2020;21:1444–55. doi: 10.1038/s41590-020-0783-5
Gong Z, Li Q, Shi J, Liu ET, Shultz LD, Ren G. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells. Cell Metab 2022;34(12):1960–1976.e9. doi: 10.1016/j.cmet.2022.11.003
Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, Wongsiriroj N, Nagy HM, Ivanova PT, Scott SA, Knittelfelder O, Rechberger GN, Birner-Gruenberger R, Eder S, Brown HA, Haemmerle G, Oberer M, Lass A, Kershaw EE, Zimmermann R, Zechner R. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 2012;15:691–702. doi: 10.1016/j.cmet.2012.04.008
Yang A, Mottillo EP, Mladenovic-Lucas L, Zhou L, Granneman JG. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat Metab 2019;1:560–9. doi: 10.1038/s42255-019-0066-3
Wang Y, Kory N, BasuRay S, Cohen JC, Hobbs HH. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 2019;69:2427–41. doi: 10.1002/hep.30583
Dong XC. PNPLA3-A potential therapeutic target for personalized treatment of chronic liver disease. Front Med (Lausanne) 2019;6:304. doi: 10.3389/fmed.2019.00304
BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci U S A 2019;116:9521–6. doi: 10.1073/pnas.190197411
Yuan S, Liu H, Yuan D, Xu J, Chen Y, Xu X, Xu F, Liang H. PNPLA3 I148M mediates the regulatory effect of NF-kB on inflammation in PA-treated HepG2 cells. J Cell Mol Med 2020;24:1541–52. doi: 10.1111/jcmm.14839
Gao J, Simon M. Identification of a novel keratinocyte retinyl ester hydrolase as a transacylase and lipase. J Invest Dermatol 2005;124:1259–66. doi: 10.1111/j.0022-202X.2005.23761.x
Schreiber R, Taschler U, Preiss-Landl K, Wongsiriroj N, Zimmermann R, Lass A. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta 2012;1821:113–23. doi: 10.1016/j.bbalip.2011.05.001
Gao JG, Simon M. Molecular screening for GS2 lipase regulators: inhibition of keratinocyte retinylester hydrolysis by TIP47. J Invest Dermatol 2006;126:2087–95. doi: 10.1038/sj.jid.5700327
Gao JG, Shih A, Gruber R, Schmuth M, Simon M. GS2 as a retinol transacylase and as a catalytic dyad independent regulator of retinylester accretion. Mol Genet Metab 2009;96:253–60. doi: 10.1016/j.ymgme.2008.12.007
Holmes RS. Vertebrate patatin-like phospholipase domain-containing protein 4 (PNPLA4) genes and proteins: a gene with a role in retinol metabolism. 3 Biotech 2012;2:277–86. doi: 10.1007/s13205-012-0063-7
Yang L, Qian G, Xue Z, Lei H, Kui X, Yan-Qing H, Lan L, Yu-Lian M, Kui L. PNPLA5-knockout rats induced by CRISPR/Cas9 exhibit abnormal bleeding and lipid level. J Integr Agric 2017;16:169–80. doi: 10.1016/S2095-3119(16)61437-5
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 2018;191:1–22. doi: 10.1016/j.pharmthera.2018.06.004
Chang PA, Wu YJ. Neuropathy target esterase: an essential enzyme for neural development and axonal maintenance. Int J Biochem Cell Biol 2010;42:573–5. doi: 10.1016/j.biocel.2009.12.007
Chen JX, Long DX, Hou WY, Li W, Wu YJ. Regulation of neuropathy target esterase by the cAMP/protein kinase A signal. Pharmacol Res 2010;62:259–64. doi: 10.1016/j.phrs.2010.03.006
Wijeyesakere SJ, Richardson RJ, Stuckey JA. Modeling the tertiary structure of the patatin domain of neuropathy target esterase. Protein J 2007;26:165–72. doi: 10.1007/s10930-006-9058-8
Chang P, He L, Wang Y, Heier C, Wu Y, Huang F. Characterization of the interaction of neuropathy target esterase with the endoplasmic reticulum and lipid droplets. Biomolecules 2019;9(12):848. doi: 10.3390/biom9120848
Sogorb MA, Pamies D, Estevan C, Estévez J, Vilanova E. Roles of NTE protein and encoding gene in development and neurodevelopmental toxicity. Chem Biol Interact 2016;259(Pt B):352–7. doi: 10.1016/j.cbi.2016.07.030
Greiner AJ, Richardson RJ, Worden RM, Ofoli RY. Influence of lysophospholipid hydrolysis by the catalytic domain of neuropathy target esterase on the fluidity of bilayer lipid membranes. Biochim Biophys Acta 2010;1798:1533–9. doi: 10.1016/j.bbamem.2010.03.015
Hein ND, Stuckey JA, Rainier SR, Fink JK, Richardson RJ. Constructs of human neuropathy target esterase catalytic domain containing mutations related to motor neuron disease have altered enzymatic properties. Toxicol Lett 2010;196:67–73. doi: 10.1016/j.toxlet.2010.03.1120
Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, Hannequin D, Strom TM, Prokisch H, Kernstock C, Durr A, Schöls L, Lima-Martínez MM, Farooq A, Schüle R, Stevanin G, Marques W, Züchner S. PNPLA6 mutations cause Boucher-Neuhäuser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain 2014;137:69–77. doi: 10.1093/brain/awt326
Shin M, Ware TB, Lee HC, Hsu KL. Lipid-metabolizing serine hydrolases in the mammalian central nervous system: endocannabinoids and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:907–21. doi: 10.1016/j.bbalip.2018.08.007
Heier C, Kien B, Huang F, Eichmann TO, Xie H, Zechner R, Chang PA. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain. J Biol Chem 2017;292:19087–98. doi: 10.1074/jbc.M117.792978
Chang PA, Long DX, Wu YJ. Molecular cloning and expression of the C-terminal domain of mouse NTE-related esterase. Mol Cell Biochem 2007;306:25–32. doi: 10.1007/s11010-007-9550-2
Chang P, Sun T, Heier C, Gao H, Xu H, Huang F. Interaction of the lysophospholipase PNPLA7 with lipid droplets through the catalytic region. Mol Cells 2020;43:286–97. doi: 10.14348/molcells.2020.2283
Miš K, Lulić A-M, Marš T, Pirkmajer S, Katalinić M. Insulin, dibutyryl-cAMP, and glucose modulate expression of patatin-like domain containing protein 7 in cultured human myotubes. Front Endocrinol (Lausanne) 2023;14:1139303. doi: 10.3389/fendo.2023.1139303
Vogel P, Read RW, Hansen GM, Powell DR. Histopathology is required to identify and characterize myopathies in high-throughput phenotype screening of genetically engineered mice. Vet Pathol 2021;58:1158–71. doi: 10.1177/03009858211030541
Wang X, Guo M, Wang Q, Wang Q, Zuo S, Zhang X, Tong H, Chen J, Wang H, Chen X, Guo J, Su X, Liang H, Zhou H, Li JZ. The patatin-like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability. Hepatology 2020;72:1569–85. doi: 10.1002/hep.31161
Hirabayashi T, Kawaguchi M, Harada S, Mouri M, Takamiya R, Miki Y, Sato H, Taketomi Y, Yokoyama K, Kobayashi T, Tokuoka SM, Kita Y, Yoda E, Hara S, Mikami K, Nishito Y, Kikuchi N, Nakata R, Kaneko M, Kiyonari H, Kasahara K, Aiba T, Ikeda K, Soga T, Kurano M, Yatomi Y, Murakami M. Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups. Cell Rep 2023;42(2):111940. doi: 10.1016/j.celrep.2022.111940
Mancuso DJ, Jenkins CM, Gross RW. The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A(2). J Biol Chem 2000;275:9937–45. doi: 10.1074/jbc.275.14.9937
Yan W, Jenkins CM, Han X, Mancuso DJ, Sims HF, Yang K, Gross RW. The highly selective production of 2-arachidonoyl lysophosphatidylcholine catalyzed by purified calcium-independent phospholipase A2gamma: identification of a novel enzymatic mediator for the generation of a key branch point intermediate in eicosanoid signaling. J Biol Chem 2005;280:26669–79. doi: 10.1074/jbc.M502358200
Rauckhorst AJ, Pfeiffer DR, Broekemeier KM. The iPLA(2)γ is identified as the membrane potential sensitive phospholipase in liver mitochondria. FEBS Lett 2015;589:2367–71. doi: 10.1016/j.febslet.2015.07.016
Kim KY, Jang HJ, Yang YR, Park KI, Seo J, Shin IW, Jeon TI, Ahn SC, Suh PG, Osborne TF, Seo YK. SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci Rep 2016;6:35732. doi: 10.1038/srep35732
Mancuso DJ, Kotzbauer P, Wozniak DF, Sims HF, Jenkins CM, Guan S, Han X, Yang K, Sun G, Malik I, Conyers S, Green KG, Schmidt RE, Gross RW. Genetic ablation of calcium-independent phospholipase A2{gamma} leads to alterations in hippocampal cardiolipin content and molecular species distribution, mitochondrial degeneration, autophagy, and cognitive dysfunction. J Biol Chem 2009;284:35632–44. doi: 10.1074/jbc.M109.055194
Yoda E, Hachisu K, Taketomi Y, Yoshida K, Nakamura M, Ikeda K, Taguchi R, Nakatani Y, Kuwata H, Murakami M, Kudo I, Hara S. Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of Group VIB Ca2+-independent phospholipase A2gamma-deficient mice. J Lipid Res 2010;51:3003–15. doi: 10.1194/jlr.M008060
Liu X, Sims HF, Jenkins CM, Guan S, Dilthey BG, Gross RW. 12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2γ knockout. J Biol Chem 2020;295:5307–20. doi: 10.1074/jbc.RA119.012296
Saunders CJ, Moon SH, Liu X, Thiffault I, Coffman K, LePichon JB, Taboada E, Smith LD, Farrow EG, Miller N, Gibson M, Patterson M, Kingsmore SF, Gross RW. Loss of function variants in human PNPLA8 encoding calcium-independent phospholipase A2γ recapitulate the mitochondriopathy of the homologous null mouse. Hum Mutat 2015;36:301–6. doi: 10.1002/humu.22743
Chao H, Liu Y, Fu X, Xu X, Bao Z, Lin C, Li Z, Liu Y, Wang X, You Y, Liu N, Ji J. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson’s disease. Exp Neurol 2018;300:74–86. doi: 10.1016/j.expneurol.2017.10.031
Shukla A, Saneto RP, Hebbar M, Mirzaa G, Girisha KM. A neurodegenerative mitochondrial disease phenotype due to biallelic loss-of-function variants in PNPLA8 encoding calcium-independent phospholipase A2γ. Am J Med Genet A 2018;176:1232–7. doi: 10.1002/ajmg.a.38687
Rauckhorst AJ, Broekemeier KM, Pfeiffer DR. Regulation of the Ca2+-independent phospholipase A2 in liver mitochondria by changes in the energetic state. J Lipid Res 2014;55:826–36. doi: 10.1194/jlr.M043307
Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:846–60. doi: 10.1016/j.bbalip.2018.10.010
Hsu YH, Bucher D, Cao J, Li S, Yang SW, Kokotos G, Woods VL Jr, McCammon JA, Dennis EA. Fluoroketone inhibition of Ca2+-independent phospholipase A2 through binding pocket association defined by hydrogen/deuterium exchange and molecular dynamics. J Am Chem Soc 2013;135:1330–7. doi: 10.1021/ja306490g
Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2(iPLA2β) and its role in β-cell programmed cell death. Biochimie 2010;92:627–37. doi: 10.1016/j.biochi.2010.01.005
Song H, Rohrs H, Tan M, Wohltmann M, Ladenson JH, Turk J. Effects of endoplasmic reticulum stress on group VIA phospholipase A2 in beta cells include tyrosine phosphorylation and increased association with calnexin. J Biol Chem 2010;285:33843–57. doi: 10.1074/jbc.M110.153197
Morrison K, Witte K, Mayers JR, Schuh AL, Audhya A. Roles of acidic phospholipids and nucleotides in regulating membrane binding and activity of a calcium-independent phospholipase A2 isoform. J Biol Chem 2012;287:38824–34. doi: 10.1074/jbc.M112.391508
Malik I, Turk J, Mancuso DJ, Montier L, Wohltmann M, Wozniak DF, Schmidt RE, Gross RW, Kotzbauer PT. Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. Am J Pathol 2008;172:406–16. doi: 10.2353/ajpath.2008.070823
Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J. Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2β in pancreatic β-cells and in iPLA2β-null mice. Am J Physiol Endocrinol Metab 2008;294(2):E217–29. doi: 10.1152/ajpendo.00474.2007
Song H, Bao S, Lei X, Jin C, Zhang S, Turk J, Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA2β. Biochim Biophys Acta 2010;1801:547–58. doi: 10.1016/j.bbalip.2010.01.006
Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, Greenstein D, Wohltmann M, Turk J, Rapoport SI, Taha AY. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A2-VIA (iPLA2β)-knockout mice. Biochim Biophys Acta 2012;1821:1278–86. doi: 10.1016/j.bbalip.2012.02.003
Chiu CC, Lu CS, Weng YH, Chen YL, Huang YZ, Chen RS, Cheng YC, Huang YC, Liu YC, Lai SC, Lin KJ, Lin YW, Chen YJ, Chen CL, Yeh TH, Wang HL. PARK14 (D331Y) PLA2G6 causes early-onset degeneration of substantia nigra dopaminergic neurons by inducing mitochondrial dysfunction, ER stress, mitophagy impairment and transcriptional dysregulation in a knockin mouse model. Mol Neurobiol 2019;56:3835–53. doi: 10.1007/s12035-018-1118-5
Gregory A, Westaway SK, Holm IE, Kotzbauer PT, Hogarth P, Sonek S, Coryell JC, Nguyen TM, Nardocci N, Zorzi G, Rodriguez D, Desguerre I, Bertini E, Simonati A, Levinson B, Dias C, Barbot C, Carrilho I, Santos M, Malik I, Gitschier J, Hayflick SJ. Neurodegeneration associated with genetic defects in phospholipase A2. Neurology 2008;71:1402–9. doi: 10.1212/01.wnl.0000327094.67726.28
Turk J, Song H, Wohltmann M, Frankfater C, Lei X, Ramanadham S. Metabolic effects of selective deletion of group VIA phospholipase A2 from macrophages or pancreatic islet β-cells. Biomolecules 2020;10(10):1455. doi: 10.3390/biom10101455
Ali T, Lei X, Barbour SE, Koizumi A, Chalfant CE, Ramanadham S. Alterations in β-cell sphingolipid profile associated with ER stress and iPLA2β: another contributor to β-cell apoptosis in type 1 diabetes. Molecules 2021;26(21):6361. doi: 10.3390/molecules26216361
Jin T, Lin J, Gong Y, Bi X, Hu S, Lv Q, Chen J, Li X, Chen J, Zhang W, Wang M, Fu G. iPLA2β contributes to ER stress-induced apoptosis during myocardial ischemia/reperfusion injury. Cells 2021;10(6):1446. doi: 10.3390/cells10061446
Chen D, Chu B, Yang X, Liu Z, Jin Y, Kon N, Rabadan R, Jiang X, Stockwell BR, Gu W. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 2021;12(1):3644. doi: 10.1038/s41467-021-23902-6
Lin G, Lee PT, Chen K, Mao D, Tan KL, Zuo Z, Lin WW, Wang L, Bellen HJ. Phospholipase PLA2G6, a parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-synuclein gain. Cell Metab 2018;28:605–618.e6. doi: 10.1016/j.cmet.2018.05.019
Marš T, Miš K, Pirkmajer S, Katalinić M, Grubić Z. The effects of organophosphates in the early stages of human muscle regeneration. In: Gupta RC, editor: Handbook of toxicology of chemical warfare agents. 2nd ed. Chapter 51. Cambridge, Massachusetts (USA): Academic Press; 2020. p. 751–9. doi: 10.1016/B978-0-12-800159-2.00051-8