References
- Long JZ, Cravatt BF. The metabolic hydrolases and their Functions in mammalian physiology and disease. Chem Rev 2011;111:6022–63. doi: 10.1021/cr200075y
- Buller RB, Townsend CA. Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Proc Natl Acad Sci U S A 2013;110(8):E653–61. doi: 10.1073/pnas.1221050110
- Botos I, Wlodawer A. The expanding diversity of serine hydrolases. Curr Opin Struct Biol 2007;17:683–90. doi: 10.1016/j.sbi.2007.08.003
- Kienesberger PC, Oberer M, Lass A, Zechner R. Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 2009;50(Suppl):S63–8. doi: 10.1194/jlr.R800082-JLR200
- Wilson PA, Gardner SD, Lambie NM, Commans SA, Crowther DJ. Characterization of the human patatin-like phospholipase family. J Lipid Res 2006;47:1940–9. doi: 10.1194/jlr.M600185-JLR200
- Rydel TJ, Williams JM, Krieger E, Moshiri F, Stallings WC, Brown SM, Pershing JC, Purcell JP, Alibhai MF. The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 2003;42:6696–708. doi: 10.1021/bi027156r
- Wu J, Wu Q, Yang D, Zhou M, Xu J, Wen Q, Cui Y, Bai Y, Xu S, Wang Z, Wang S. Patatin primary structural properties and effects on lipid metabolism. Food Chem 2021;344:128661. doi: 10.1016/j.foodchem.2020.128661
- Wijeyesakere SJ, Richardson RJ, Stuckey JA. Crystal structure of patatin-17 in complex with aged and non-aged organophosphorus compounds. PLoS One 2014;9(9):e108245. doi: 10.1371/journal.pone.0108245
- Kossiakoff AA, Spencer SA. Direct determination of the protonation states of aspartic acid-102 and Histidine-57 in the tetrahedral intermediate of the serine proteases: neutron, structure of trypsin. Biochemistry 1981;20:6462–74. doi: 10.1021/bi00525a027
- Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015;56:1643–68. doi: 10.1194/jlr.R058701
- Holmes R. Comparative studies of adipose triglyceride lipase genes and proteins: an ancient gene in vertebrate evolution. Open Access Bioinformatics 2012;4:15–29. doi: 10.2147/OAB.S27508
- Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011;111:6130–85. doi: 10.1021/cr200085w
- Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res 2011;50:152–92. doi: 10.1016/j.plipres.2010.12.001
- Murakami M, Sato H, Taketomi Y. Updating phospholipase A2 biology. Biomolecules 2020;10(10):1457. doi: 10.3390/biom10101457
- Pingitore P, Romeo S. The role of PNPLA3 in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:900–6. doi: 10.1016/j.bbalip.2018.06.018
- Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Adv Neurotoxicol 2020;4:1–78. doi: 10.1016/bs.ant.2020.01.001
- Malley KR, Koroleva O, Miller I, Sanishvili R, Jenkins CM, Gross RW, Korolev S. The structure of iPLA2β reveals dimeric active sites and suggests mechanisms of regulation and localization. Nat Commun 2018;9(1):765. doi: 10.1038/s41467-018-03193-0
- Chang PA, Sun YJ, Huang FF, Qin WZ, Chen YY, Zeng X, Wu YJ. Identification of human patatin-like phospholipase domain-containing protein 1 and a mutant in human cervical cancer HeLa cells. Mol Biol Rep 2013;40:5597–605. doi: 10.1007/s11033-013-2661-9
- Chang PA, Han LP, Sun LX, Huang FF. Identification mouse patatin-like phospholipase domain containing protein 1 as a skin-specific and membrane-associated protein. Gene 2016;591:344–50. doi: 10.1016/j.gene.2016.06.012
- Murugesan S, Goldberg EB, Dou E, Brown WJ. Identification of diverse lipid droplet targeting motifs in the PNPLA family of triglyceride lipases. PLoS One 2013;8(5):e64950. doi: 10.1371/journal.pone.0064950
- Kien B, Grond S, Haemmerle G, Lass A, Eichmann TO, Radner FPW. ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J Lipid Res 2018;59:2360–7. doi: 10.1194/jlr.M089771
- Onal G, Kutlu O, Ozer E, Gozuacik D, Karaduman A, Dokmeci Emre S. Impairment of lipophagy by PNPLA1 mutations causes lipid droplet accumulation in primary fibroblasts of Autosomal Recessive Congenital Ichthyosis patients. J Dermatol Sci 2019;93:50–7. doi: 10.1016/j.jdermsci.2018.11.013
- Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 2012;81:687–714. doi: 10.1146/annurev-biochem-061009-102430
- Ohno Y, Nara A, Nakamichi S, Kihara A. Molecular mechanism of the ichthyosis pathology of Chanarin-Dorfman syndrome: Stimulation of PNPLA1-catalyzed ω-O-acylceramide production by ABHD5. J Dermatol Sci 2018;92:245–53. doi: 10.1016/j.jdermsci.2018.11.005
- Grall A, Guaguère E, Planchais S, Grond S, Bourrat E, Hausser I, Hitte C, Le Gallo M, Derbois C, Kim GJ, Lagoutte L, Degorce-Rubiales F, Radner FP, Thomas A, Küry S, Bensignor E, Fontaine J, Pin D, Zimmermann R, Zechner R, Lathrop M, Galibert F, André C, Fischer J. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet 2012;44:140–7. doi: 10.1038/ng.1056
- Hirabayashi T, Anjo T, Kaneko A, Senoo Y, Shibata A, Takama H, Yokoyama K, Nishito Y, Ono T, Taya C, Muramatsu K, Fukami K, Muñoz-Garcia A, Brash AR, Ikeda K, Arita M, Akiyama M, Murakami M. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat Commun 2017;8:14609. doi: 10.1038/ncomms14609
- Grond S, Eichmann TO, Dubrac S, Kolb D, Schmuth M, Fischer J, Crumrine D, Elias PM, Haemmerle G, Zechner R, Lass A, Radner FPW. PNPLA1 deficiency in mice and humans leads to a defect in the synthesis of omega-O-acylceramides. J Invest Dermatol 2017;137:394–402. doi: 10.1016/j.jid.2016.08.036
- Ohno Y, Kamiyama N, Nakamichi S, Kihara A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat Commun 2017;8:14610. doi: 10.1038/ncomms14610
- Murakami M, Yamamoto K, Taketomi Y. Phospholipase A2 in skin biology: new insights from gene-manipulated mice and lipidomics. Inflamm Regen 2018;38:31. doi: 10.1186/s41232-018-0089-2
- Radner FP, Grond S, Haemmerle G, Lass A, Zechner R. Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease. Dermatoendocrinology 2011;3:77–83. doi: 10.4161/derm.3.2.15472
- Lake AC, Sun Y, Li JL, Kim JE, Johnson JW, Li D, Revett T, Shih HH, Liu W, Paulsen JE, Gimeno RE. Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J Lipid Res 2005;46:2477–87. doi: 10.1194/jlr.M500290-JLR200
- Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL. ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 2006;7:106–13. doi: 10.1038/sj.embor.7400559
- Cornaciu I, Boeszoermenyi A, Lindermuth H, Nagy HM, Cerk IK, Ebner C, Salzburger B, Gruber A, Schweiger M, Zechner R, Lass A, Zimmermann R, Oberer M. The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively. PLoS ONE 2011;6(10):e26349. doi: 10.1371/journal.pone.0026349
- Zimmermann R, Lass A, Haemmerle G, Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta 2009;1791:494–500. doi: 10.1016/j.bbalip.2008.10.005
- Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res 2009;50:3–21. doi: 10.1194/jlr.R800031-JLR200
- Kershaw EE, Hamm JK, Verhagen LA, Peroni O, Katic M, Flier JS. Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes 2006;55:148–57. doi: 10.2337/diabetes.55.01.06.db05-0982
- Kienesberger PC, Lee D, Pulinilkunnil T, Brenner DS, Cai L, Magnes C, Koefeler HC, Streith IE, Rechberger GN, Haemmerle G, Flier JS, Zechner R, Kim YB, Kershaw EE. Adipose triglyceride lipase deficiency causes tissue-specific changes in insulin signaling. J Biol Chem 2009;284:30218–29. doi: 10.1074/jbc.M109.047787
- Schreiber R, Xie H, Schweiger M. Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:880–99. doi: 10.1016/j.bbalip.2018.10.008
- Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 2004;279:48968–75. doi: 10.1074/jbc.M407841200
- Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 2011;50:14–27. doi: 10.1016/j.plipres.2010.10.004
- Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F. FAT SIGNALS - lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012;15:279–91. doi: 10.1016/j.cmet.2011.12.018
- Schneider G, Neuberger G, Wildpaner M, Tian S, Berezovsky I, Eisenhaber F. Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinformatics 2006;7:164. doi: 10.1186/1471-2105-7-164
- Taschler U, Schreiber R, Chitraju C, Grabner GF, Romauch M, Wolinski H, Haemmerle G, Breinbauer R, Zechner R, Lass A, Zimmermann R. Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells. Biochim Biophys Acta 2015;1851:937–45. doi: 10.1016/j.bbalip.2015.02.017
- Patel R, Santoro A, Hofer P, Tan D, Oberer M, Nelson AT, Konduri S, Siegel D, Zechner R, Saghatelian A, Kahn BB. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 2022;606:968–75. doi: 10.1038/s41586-022-04787-x
- Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab 2009;297(2):E289–96. doi: 10.1152/ajpendo.00099.200
- Kulminskaya N, Oberer M. Protein-protein interactions regulate the activity of Adipose Triglyceride Lipase in intracellular lipolysis. Biochimie 2020;169:62–8. doi: 10.1016/j.biochi.2019.08.004
- Eichmann TO, Kumari M, Haas JT, Farese RV Jr, Zimmermann R, Lass A, Zechner R. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 2012;287:41446–57. doi: 10.1074/jbc.M112.400416
- Yang A, Mottillo EP. Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020;477:985–1008. doi: 10.1042/BCJ20190468
- Nagy HM, Paar M, Heier C, Moustafa T, Hofer P, Haemmerle G, Lass A, Zechner R, Oberer M, Zimmermann R. Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A. Biochim Biophys Acta 2014;1841:588–94. doi: 10.1016/j.bbalip.2014.01.005
- Granneman JG, Moore HP, Mottillo EP, Zhu Z, Zhou L. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem 2011;286:5126–35. doi: 10.1074/jbc.M110.180711
- Fuchs CD, Radun R, Dixon ED, Mlitz V, Timelthaler G, Halilbasic E, Herac M, Jonker JW, Ronda OAHO, Tardelli M, Haemmerle G, Zimmermann R, Scharnagl H, Stojakovic T, Verkade HJ, Trauner M. Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice. Hepatology 2022;75:125–39. doi: 10.1002/hep.32112
- Xie H, Heier C, Kien B, Vesely PW, Tang Z, Sexl V, Schoiswohl G, Strießnig-Bina I, Hoefler G, Zechner R, Schweiger M. Adipose triglyceride lipase activity regulates cancer cell proliferation via AMP-kinase and mTOR signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865(9):158737. doi: 10.1016/j.bbalip.2020.158737
- Schweiger M, Romauch M, Schreiber R, Grabner GF, Hütter S, Kotzbeck P, Benedikt P, Eichmann TO, Yamada S, Knittelfelder O, Diwoky C, Doler C, Mayer N, De Cecco W, Breinbauer R, Zimmermann R, Zechner R. Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nat Commun 2017;8:14859. doi: 10.1038/ncomms14859
- Yin H, Li W, Mo L, Deng S, Lin W, Ma C, Luo Z, Luo C, Hong H. Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway. J Cell Mol Med 2021;25:3963–75. doi: 10.1111/jcmm.16349
- Liu X, Liang Y, Song R, Yang G, Han J, Lan Y, Pan S, Zhu M, Liu Y, Wang Y, Meng F, Cui Y, Wang J, Zhang B, Song X, Lu Z, Zheng T, Liu L. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Mol Cancer 2018;17(1):90. doi: 10.1186/s12943-018-0838-5
- Liu M, Yu X, Lin L, Deng J, Wang K, Xia Y, Tang X, Hong H. ATGL promotes the proliferation of hepatocellular carcinoma cells via the p-AKT signaling pathway. J Biochem Mol Toxicol 2019;33(11):e22391. doi: 10.1002/jbt.22391
- Li P, Lu M, Shi J, Gong Z, Hua L, Li Q, Lim B, Zhang XH, Chen X, Li S, Shultz LD, Ren G. Lung mesenchymal cells elicit lipid storage in neutrophils that fuel breast cancer lung metastasis. Nat Immunol 2020;21:1444–55. doi: 10.1038/s41590-020-0783-5
- Gong Z, Li Q, Shi J, Liu ET, Shultz LD, Ren G. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells. Cell Metab 2022;34(12):1960–1976.e9. doi: 10.1016/j.cmet.2022.11.003
- Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, Wongsiriroj N, Nagy HM, Ivanova PT, Scott SA, Knittelfelder O, Rechberger GN, Birner-Gruenberger R, Eder S, Brown HA, Haemmerle G, Oberer M, Lass A, Kershaw EE, Zimmermann R, Zechner R. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 2012;15:691–702. doi: 10.1016/j.cmet.2012.04.008
- Yang A, Mottillo EP, Mladenovic-Lucas L, Zhou L, Granneman JG. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat Metab 2019;1:560–9. doi: 10.1038/s42255-019-0066-3
- Chamoun Z, Vacca F, Parton RG, Gruenberg J. PNPLA3/adiponutrin functions in lipid droplet formation. Biol Cell 2013;105:219–33. doi: 10.1111/boc.201200036
- Wang Y, Kory N, BasuRay S, Cohen JC, Hobbs HH. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 2019;69:2427–41. doi: 10.1002/hep.30583
- Dong XC. PNPLA3-A potential therapeutic target for personalized treatment of chronic liver disease. Front Med (Lausanne) 2019;6:304. doi: 10.3389/fmed.2019.00304
- Winberg ME, Motlagh MK, Stenkula KG, Holm C, Jones HA. Adiponutrin: a multimeric plasma protein. Biochem Biophys Res Commun 2014;446:1114–9. doi: 10.1016/j.bbrc.2014.03.078
- Ruhanen H, Perttilä J, Hölttä-Vuori M, Zhou Y, Yki-Järvinen H, Ikonen E, Käkelä R, Olkkonen VM. PNPLA3 mediates hepatocyte triacylglycerol remodeling. J Lipid Res 2014;55:739–46. doi: 10.1194/jlr.M046607
- BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci U S A 2019;116:9521–6. doi: 10.1073/pnas.190197411
- Yuan S, Liu H, Yuan D, Xu J, Chen Y, Xu X, Xu F, Liang H. PNPLA3 I148M mediates the regulatory effect of NF-kB on inflammation in PA-treated HepG2 cells. J Cell Mol Med 2020;24:1541–52. doi: 10.1111/jcmm.14839
- Park J, Zhao Y, Zhang F, Zhang S, Kwong AC, Zhang Y, Hoffmann HH, Bushweller L, Wu X, Ashbrook AW, Stefanovic B, Chen S, Branch AD, Mason CE, Jung JU, Rice CM, Wu X. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J Hepatol 2023;78:45–56. doi: 10.1016/j.jhep.2022.08.022
- BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 2017;66:1111–24. doi: 10.1002/hep.29273
- Witzel HR, Schwittai IMG, Hartmann N, Mueller S, Schattenberg JM, Gong XM, Backs J, Schirmacher P, Schuppan D, Roth W, Straub BK. PNPLA3(I148M) inhibits lipolysis by perilipin-5-dependent competition with ATGL. Cells 2022;12(1):73. doi: 10.3390/cells12010073
- Valenti L, Dongiovanni P. Mutant PNPLA3 I148M protein as pharmacological target for liver disease. Hepatology 2017;66:1026–8. doi: 10.1002/hep.29298
- McHenry S, Davidson NO. Missense mutant patatin-like phospholipase domain containing 3 alters lipid droplet turnover in partnership with CGI-58. Hepatology 2019;69:2323–5. doi: 10.1002/hep.30620
- Gao J, Simon M. Identification of a novel keratinocyte retinyl ester hydrolase as a transacylase and lipase. J Invest Dermatol 2005;124:1259–66. doi: 10.1111/j.0022-202X.2005.23761.x
- Schreiber R, Taschler U, Preiss-Landl K, Wongsiriroj N, Zimmermann R, Lass A. Retinyl ester hydrolases and their roles in vitamin A homeostasis. Biochim Biophys Acta 2012;1821:113–23. doi: 10.1016/j.bbalip.2011.05.001
- Gao JG, Simon M. Molecular screening for GS2 lipase regulators: inhibition of keratinocyte retinylester hydrolysis by TIP47. J Invest Dermatol 2006;126:2087–95. doi: 10.1038/sj.jid.5700327
- Gao JG, Shih A, Gruber R, Schmuth M, Simon M. GS2 as a retinol transacylase and as a catalytic dyad independent regulator of retinylester accretion. Mol Genet Metab 2009;96:253–60. doi: 10.1016/j.ymgme.2008.12.007
- Holmes RS. Vertebrate patatin-like phospholipase domain-containing protein 4 (PNPLA4) genes and proteins: a gene with a role in retinol metabolism. 3 Biotech 2012;2:277–86. doi: 10.1007/s13205-012-0063-7
- Yang L, Qian G, Xue Z, Lei H, Kui X, Yan-Qing H, Lan L, Yu-Lian M, Kui L. PNPLA5-knockout rats induced by CRISPR/Cas9 exhibit abnormal bleeding and lipid level. J Integr Agric 2017;16:169–80. doi: 10.1016/S2095-3119(16)61437-5
- Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T, Deretic V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 2014;24:609–20. doi: 10.1016/j.cub.2014.02.008
- Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta 2016;1861:269–84. doi: 10.1016/j.bbalip.2016.01.006
- Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 2018;191:1–22. doi: 10.1016/j.pharmthera.2018.06.004
- Cingolani F, Czaja MJ. Regulation and functions of autophagic lipolysis. Trends Endocrinol Metab 2016;27:696–705. doi: 10.1016/j.tem.2016.06.003
- Richardson RJ, Hein ND, Wijeyesakere SJ, Fink JK, Makhaeva GF. Neuropathy target esterase (NTE): overview and future. Chem Biol Interact 2013;203:238–44. doi: 10.1016/j.cbi.2012.10.024
- Chang PA, Wu YJ. Neuropathy target esterase: an essential enzyme for neural development and axonal maintenance. Int J Biochem Cell Biol 2010;42:573–5. doi: 10.1016/j.biocel.2009.12.007
- Chen JX, Long DX, Hou WY, Li W, Wu YJ. Regulation of neuropathy target esterase by the cAMP/protein kinase A signal. Pharmacol Res 2010;62:259–64. doi: 10.1016/j.phrs.2010.03.006
- Wijeyesakere SJ, Richardson RJ, Stuckey JA. Modeling the tertiary structure of the patatin domain of neuropathy target esterase. Protein J 2007;26:165–72. doi: 10.1007/s10930-006-9058-8
- Chang P, He L, Wang Y, Heier C, Wu Y, Huang F. Characterization of the interaction of neuropathy target esterase with the endoplasmic reticulum and lipid droplets. Biomolecules 2019;9(12):848. doi: 10.3390/biom9120848
- Sogorb MA, Pamies D, Estevan C, Estévez J, Vilanova E. Roles of NTE protein and encoding gene in development and neurodevelopmental toxicity. Chem Biol Interact 2016;259(Pt B):352–7. doi: 10.1016/j.cbi.2016.07.030
- Vose SC, Fujioka K, Gulevich AG, Lin AY, Holland NT, Casida JE. Cellular function of neuropathy target esterase in lysophosphatidylcholine action. Toxicol Appl Pharmacol 2008;232:376–83. doi: 10.1016/j.taap.2008.07.015
- Greiner AJ, Richardson RJ, Worden RM, Ofoli RY. Influence of lysophospholipid hydrolysis by the catalytic domain of neuropathy target esterase on the fluidity of bilayer lipid membranes. Biochim Biophys Acta 2010;1798:1533–9. doi: 10.1016/j.bbamem.2010.03.015
- Hein ND, Stuckey JA, Rainier SR, Fink JK, Richardson RJ. Constructs of human neuropathy target esterase catalytic domain containing mutations related to motor neuron disease have altered enzymatic properties. Toxicol Lett 2010;196:67–73. doi: 10.1016/j.toxlet.2010.03.1120
- Pamies D, Bal-Price A, Fabbri M, Gribaldo L, Scelfo B, Harris G, Collotta A, Vilanova E, Sogorb MA. Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience 2014;281:54–67. doi: 10.1016/j.neuroscience.2014.08.031
- Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, Hannequin D, Strom TM, Prokisch H, Kernstock C, Durr A, Schöls L, Lima-Martínez MM, Farooq A, Schüle R, Stevanin G, Marques W, Züchner S. PNPLA6 mutations cause Boucher-Neuhäuser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain 2014;137:69–77. doi: 10.1093/brain/awt326
- Shin M, Ware TB, Lee HC, Hsu KL. Lipid-metabolizing serine hydrolases in the mammalian central nervous system: endocannabinoids and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:907–21. doi: 10.1016/j.bbalip.2018.08.007
- Heier C, Kien B, Huang F, Eichmann TO, Xie H, Zechner R, Chang PA. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain. J Biol Chem 2017;292:19087–98. doi: 10.1074/jbc.M117.792978
- Chang PA, Chen YY, Long DX, Qin WZ, Mou XL. Degradation of mouse NTE-related esterase by macroautophagy and the proteasome. Mol Biol Rep 2012;39:7125–31. doi: 10.1007/s11033-012-1544-9
- Chang PA, Long DX, Wu YJ. Molecular cloning and expression of the C-terminal domain of mouse NTE-related esterase. Mol Cell Biochem 2007;306:25–32. doi: 10.1007/s11010-007-9550-2
- Kienesberger PC, Lass A, Preiss-Landl K, Wolinski H, Kohlwein SD, Zimmermann R, Zechner R. Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 2008;283:5908–17. doi: 10.1074/jbc.M709598200
- Chang P, Sun T, Heier C, Gao H, Xu H, Huang F. Interaction of the lysophospholipase PNPLA7 with lipid droplets through the catalytic region. Mol Cells 2020;43:286–97. doi: 10.14348/molcells.2020.2283
- Miš K, Lulić A-M, Marš T, Pirkmajer S, Katalinić M. Insulin, dibutyryl-cAMP, and glucose modulate expression of patatin-like domain containing protein 7 in cultured human myotubes. Front Endocrinol (Lausanne) 2023;14:1139303. doi: 10.3389/fendo.2023.1139303
- Vogel P, Read RW, Hansen GM, Powell DR. Histopathology is required to identify and characterize myopathies in high-throughput phenotype screening of genetically engineered mice. Vet Pathol 2021;58:1158–71. doi: 10.1177/03009858211030541
- Wang X, Guo M, Wang Q, Wang Q, Zuo S, Zhang X, Tong H, Chen J, Wang H, Chen X, Guo J, Su X, Liang H, Zhou H, Li JZ. The patatin-like phospholipase domain containing protein 7 facilitates VLDL secretion by modulating ApoE stability. Hepatology 2020;72:1569–85. doi: 10.1002/hep.31161
- Hirabayashi T, Kawaguchi M, Harada S, Mouri M, Takamiya R, Miki Y, Sato H, Taketomi Y, Yokoyama K, Kobayashi T, Tokuoka SM, Kita Y, Yoda E, Hara S, Mikami K, Nishito Y, Kikuchi N, Nakata R, Kaneko M, Kiyonari H, Kasahara K, Aiba T, Ikeda K, Soga T, Kurano M, Yatomi Y, Murakami M. Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups. Cell Rep 2023;42(2):111940. doi: 10.1016/j.celrep.2022.111940
- Tanaka H, Takeya R, Sumimoto H. A novel intracellular membrane-bound calcium-independent phospholipase A(2). Biochem Biophys Res Commun 2000;272:320–6. doi: 10.1006/bbrc.2000.2776
- Tanaka H, Minakami R, Kanaya H, Sumimoto H. Catalytic residues of group VIB calcium-independent phospholipase A2 (iPLA2gamma). Biochem Biophys Res Commun 2004;320:1284–90. doi: 10.1016/j.bbrc.2004.05.225
- Mancuso DJ, Jenkins CM, Gross RW. The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A(2). J Biol Chem 2000;275:9937–45. doi: 10.1074/jbc.275.14.9937
- Jenkins CM, Cedars A, Gross RW. Eicosanoid signalling pathways in the heart. Cardiovasc Res 2009;82:240–9. doi: 10.1093/cvr/cvn346
- Yan W, Jenkins CM, Han X, Mancuso DJ, Sims HF, Yang K, Gross RW. The highly selective production of 2-arachidonoyl lysophosphatidylcholine catalyzed by purified calcium-independent phospholipase A2gamma: identification of a novel enzymatic mediator for the generation of a key branch point intermediate in eicosanoid signaling. J Biol Chem 2005;280:26669–79. doi: 10.1074/jbc.M502358200
- Rauckhorst AJ, Pfeiffer DR, Broekemeier KM. The iPLA(2)γ is identified as the membrane potential sensitive phospholipase in liver mitochondria. FEBS Lett 2015;589:2367–71. doi: 10.1016/j.febslet.2015.07.016
- Kim KY, Jang HJ, Yang YR, Park KI, Seo J, Shin IW, Jeon TI, Ahn SC, Suh PG, Osborne TF, Seo YK. SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci Rep 2016;6:35732. doi: 10.1038/srep35732
- Mancuso DJ, Kotzbauer P, Wozniak DF, Sims HF, Jenkins CM, Guan S, Han X, Yang K, Sun G, Malik I, Conyers S, Green KG, Schmidt RE, Gross RW. Genetic ablation of calcium-independent phospholipase A2{gamma} leads to alterations in hippocampal cardiolipin content and molecular species distribution, mitochondrial degeneration, autophagy, and cognitive dysfunction. J Biol Chem 2009;284:35632–44. doi: 10.1074/jbc.M109.055194
- Moon SH, Jenkins CM, Liu X, Guan S, Mancuso DJ, Gross RW. Activation of mitochondrial calcium-independent phospholipase A2γ (iPLA2γ) by divalent cations mediating arachidonate release and production of downstream eicosanoids. J Biol Chem 2012;287:14880–95. doi: 10.1074/jbc.M111.336776
- Yoda E, Hachisu K, Taketomi Y, Yoshida K, Nakamura M, Ikeda K, Taguchi R, Nakatani Y, Kuwata H, Murakami M, Kudo I, Hara S. Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of Group VIB Ca2+-independent phospholipase A2gamma-deficient mice. J Lipid Res 2010;51:3003–15. doi: 10.1194/jlr.M008060
- Ye C, Shen Z, Greenberg ML. Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function. J Bioenerg Biomembr 2016;48:113–23. doi: 10.1007/s10863-014-9591-7
- Liu X, Sims HF, Jenkins CM, Guan S, Dilthey BG, Gross RW. 12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2γ knockout. J Biol Chem 2020;295:5307–20. doi: 10.1074/jbc.RA119.012296
- Saunders CJ, Moon SH, Liu X, Thiffault I, Coffman K, LePichon JB, Taboada E, Smith LD, Farrow EG, Miller N, Gibson M, Patterson M, Kingsmore SF, Gross RW. Loss of function variants in human PNPLA8 encoding calcium-independent phospholipase A2γ recapitulate the mitochondriopathy of the homologous null mouse. Hum Mutat 2015;36:301–6. doi: 10.1002/humu.22743
- Chao H, Liu Y, Fu X, Xu X, Bao Z, Lin C, Li Z, Liu Y, Wang X, You Y, Liu N, Ji J. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson’s disease. Exp Neurol 2018;300:74–86. doi: 10.1016/j.expneurol.2017.10.031
- Moon SH, Dilthey BG, Liu X, Guan S, Sims HF, Gross RW. High-fat diet activates liver iPLA2γ generating eicosanoids that mediate metabolic stress. J Lipid Res 2021;62:100052. doi: 10.1016/j.jlr.2021.100052
- Průchová P, Gotvaldová K, Smolková K, Alán L, Holendová B, Tauber J, Galkin A, Ježek P, Jabůrek M. Antioxidant role and cardiolipin remodeling by redox-activated mitochondrial Ca2+-independent phospholipase A2γ in the brain. Antioxidants (Basel) 2022;11(2):198. doi: 10.3390/antiox11020198
- Shukla A, Saneto RP, Hebbar M, Mirzaa G, Girisha KM. A neurodegenerative mitochondrial disease phenotype due to biallelic loss-of-function variants in PNPLA8 encoding calcium-independent phospholipase A2γ. Am J Med Genet A 2018;176:1232–7. doi: 10.1002/ajmg.a.38687
- Moon SH, Jenkins CM, Kiebish MA, Sims HF, Mancuso DJ, Gross RW. Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) attenuates calcium-induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release. J Biol Chem 2012;287:29837–50. doi: 10.1074/jbc.M112.373654
- Rauckhorst AJ, Broekemeier KM, Pfeiffer DR. Regulation of the Ca2+-independent phospholipase A2 in liver mitochondria by changes in the energetic state. J Lipid Res 2014;55:826–36. doi: 10.1194/jlr.M043307
- Moon SH, Liu X, Cedars AM, Yang K, Kiebish MA, Joseph SM, Kelley J, Jenkins CM, Gross RW. Heart failure-induced activation of phospholipase iPLA2γ generates hydroxyeicosatetraenoic acids opening the mitochondrial permeability transition pore. J Biol Chem 2018;293:115–29. doi: 10.1074/jbc.RA117.000405
- Turk J, White TD, Nelson AJ, Lei X, Ramanadham S. iPLA2β and its role in male fertility, neurological disorders, metabolic disorders, and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:846–60. doi: 10.1016/j.bbalip.2018.10.010
- Hsu YH, Bucher D, Cao J, Li S, Yang SW, Kokotos G, Woods VL Jr, McCammon JA, Dennis EA. Fluoroketone inhibition of Ca2+-independent phospholipase A2 through binding pocket association defined by hydrogen/deuterium exchange and molecular dynamics. J Am Chem Soc 2013;135:1330–7. doi: 10.1021/ja306490g
- Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2(iPLA2β) and its role in β-cell programmed cell death. Biochimie 2010;92:627–37. doi: 10.1016/j.biochi.2010.01.005
- Song H, Rohrs H, Tan M, Wohltmann M, Ladenson JH, Turk J. Effects of endoplasmic reticulum stress on group VIA phospholipase A2 in beta cells include tyrosine phosphorylation and increased association with calnexin. J Biol Chem 2010;285:33843–57. doi: 10.1074/jbc.M110.153197
- Morrison K, Witte K, Mayers JR, Schuh AL, Audhya A. Roles of acidic phospholipids and nucleotides in regulating membrane binding and activity of a calcium-independent phospholipase A2 isoform. J Biol Chem 2012;287:38824–34. doi: 10.1074/jbc.M112.391508
- Malik I, Turk J, Mancuso DJ, Montier L, Wohltmann M, Wozniak DF, Schmidt RE, Gross RW, Kotzbauer PT. Disrupted membrane homeostasis and accumulation of ubiquitinated proteins in a mouse model of infantile neuroaxonal dystrophy caused by PLA2G6 mutations. Am J Pathol 2008;172:406–16. doi: 10.2353/ajpath.2008.070823
- Bao S, Jacobson DA, Wohltmann M, Bohrer A, Jin W, Philipson LH, Turk J. Glucose homeostasis, insulin secretion, and islet phospholipids in mice that overexpress iPLA2β in pancreatic β-cells and in iPLA2β-null mice. Am J Physiol Endocrinol Metab 2008;294(2):E217–29. doi: 10.1152/ajpendo.00474.2007
- Song H, Bao S, Lei X, Jin C, Zhang S, Turk J, Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA2β. Biochim Biophys Acta 2010;1801:547–58. doi: 10.1016/j.bbalip.2010.01.006
- Cheon Y, Kim HW, Igarashi M, Modi HR, Chang L, Ma K, Greenstein D, Wohltmann M, Turk J, Rapoport SI, Taha AY. Disturbed brain phospholipid and docosahexaenoic acid metabolism in calcium-independent phospholipase A2-VIA (iPLA2β)-knockout mice. Biochim Biophys Acta 2012;1821:1278–86. doi: 10.1016/j.bbalip.2012.02.003
- Astudillo AM, Balboa MA, Balsinde J. Selectivity of phospholipid hydrolysis by phospholipase A2 enzymes in activated cells leading to polyunsaturated fatty acid mobilization. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:772–83. doi: 10.1016/j.bbalip.2018.07.002
- Chiu CC, Lu CS, Weng YH, Chen YL, Huang YZ, Chen RS, Cheng YC, Huang YC, Liu YC, Lai SC, Lin KJ, Lin YW, Chen YJ, Chen CL, Yeh TH, Wang HL. PARK14 (D331Y) PLA2G6 causes early-onset degeneration of substantia nigra dopaminergic neurons by inducing mitochondrial dysfunction, ER stress, mitophagy impairment and transcriptional dysregulation in a knockin mouse model. Mol Neurobiol 2019;56:3835–53. doi: 10.1007/s12035-018-1118-5
- Gregory A, Westaway SK, Holm IE, Kotzbauer PT, Hogarth P, Sonek S, Coryell JC, Nguyen TM, Nardocci N, Zorzi G, Rodriguez D, Desguerre I, Bertini E, Simonati A, Levinson B, Dias C, Barbot C, Carrilho I, Santos M, Malik I, Gitschier J, Hayflick SJ. Neurodegeneration associated with genetic defects in phospholipase A2. Neurology 2008;71:1402–9. doi: 10.1212/01.wnl.0000327094.67726.28
- Deng X, Wang J, Jiao L, Utaipan T, Tuma-Kellner S, Schmitz G, Liebisch G, Stremmel W, Chamulitrat W. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling. Biochim Biophys Acta 2016;1861:449–61. doi: 10.1016/j.bbalip.2016.02.004
- Turk J, Song H, Wohltmann M, Frankfater C, Lei X, Ramanadham S. Metabolic effects of selective deletion of group VIA phospholipase A2 from macrophages or pancreatic islet β-cells. Biomolecules 2020;10(10):1455. doi: 10.3390/biom10101455
- Ali T, Lei X, Barbour SE, Koizumi A, Chalfant CE, Ramanadham S. Alterations in β-cell sphingolipid profile associated with ER stress and iPLA2β: another contributor to β-cell apoptosis in type 1 diabetes. Molecules 2021;26(21):6361. doi: 10.3390/molecules26216361
- Jin T, Lin J, Gong Y, Bi X, Hu S, Lv Q, Chen J, Li X, Chen J, Zhang W, Wang M, Fu G. iPLA2β contributes to ER stress-induced apoptosis during myocardial ischemia/reperfusion injury. Cells 2021;10(6):1446. doi: 10.3390/cells10061446
- Chen D, Chu B, Yang X, Liu Z, Jin Y, Kon N, Rabadan R, Jiang X, Stockwell BR, Gu W. iPLA2β-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun 2021;12(1):3644. doi: 10.1038/s41467-021-23902-6
- Lin G, Lee PT, Chen K, Mao D, Tan KL, Zuo Z, Lin WW, Wang L, Bellen HJ. Phospholipase PLA2G6, a parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-synuclein gain. Cell Metab 2018;28:605–618.e6. doi: 10.1016/j.cmet.2018.05.019
- Marš T, Miš K, Pirkmajer S, Katalinić M, Grubić Z. The effects of organophosphates in the early stages of human muscle regeneration. In: Gupta RC, editor: Handbook of toxicology of chemical warfare agents. 2nd ed. Chapter 51. Cambridge, Massachusetts (USA): Academic Press; 2020. p. 751–9. doi: 10.1016/B978-0-12-800159-2.00051-8
- Kulminskaya N, Radler C, Viertlmayr R, Heier C, Hofer P, Colaço-Gaspar M, Owens RJ, Zimmermann R, Schreiber R, Zechner R, Oberer M. Optimized expression and purification of adipose triglyceride lipase improved hydrolytic and transacylation activities in vitro. J Biol Chem 2021;297(4):101206. doi: 10.1016/j.jbc.2021.101206
- Racusen D, Weller DL. Molecular weight of patatin, a major potato tuber protein. J Food Biochem 1984;8:103–7. doi: 10.1111/j.1745-4514.1984.tb00318.x