Figure 1

Figure 2

Figure 3

Impact of PFAS and its compounds on aquatic and soil microbes
| Microbes/Genus | Response to PFAS exposure | PFAS compound | References |
|---|---|---|---|
| Sediminibacterium, Opitutus, Luteolibacter, Microcystis | Increase | PFAS | 48 |
| Photobacterium phosphoreum | Increase | PFCA, PFOS, PFOA | 58, 61 |
| Actinobacteria and Bacteriodetes | Decrease | PFAS | 106 |
| Verrucomicrobia and Proteobacteria | Increase | PFAS | 106 |
| Proteobacteria and Chloroflexi | Decrease | PFOS | 62 |
| Desulfococcus and GOUTA19 | Abundant/ Increase | PFAS, PFOS, PFOA | 77, 79 |
Impact of PFAS on soil microbial communities and associated biogeochemical cycles
| PFAS | Impact on population | Bacteria groups impacted | Potential nutrient cycle associated | References |
|---|---|---|---|---|
| PFOS | Increase | Bacteriodetes | Nitrogen cycle | 34, 94, 127 |
| PFOS/PFOA | Increase | Alphaproteobacteria | Nitrogen cycle, Sulphur cycle, carbon cycle | 5, 75, |
| PFOA, PFOS | Increase | Gammaproteobacteria | Nitrogen cycle | 5, 75, 126 |
| PFOA, PFOS | Increase | Acidobacteria | Carbon cycle, nitrogen cycle | 5, 34, 75, 127, 128 |
| PFOS | Increase | Firmicutes | Nitrogen cycle | 75, 129, 130 |
| PFOA, PFOS | Increase/Decrease | Chloroflexi | Sulphur cycle | 5, 34, 75, 127, 131 |
| PFOS, PFOA | Increase/Decrease | Actinobacteria | Nitrogen cycle | 5, 75 |
| PFAS | Decrease | Thermoleophilia | Sulphur cycle | 5 |
| PFOS, PFAS | Decrease | Deltaproteobacteria | Sulphur cycle | 5, 75 |
Microbial species and mechanisms by which they biodegrade PFAS
| Bacterial species | Biodegradation mechanism | PFAS | References |
|---|---|---|---|
| Acidimicrobium sp. S. A6 | Defluorination | PFOA, PFOS | 124 |
| Synechocytis sp. PCC 6803 | Decarboxylation, 2x reductive & oxidative defluorination, trifluoromethyl loss | PFOA, PFOS | 132 |
| Pseudomonas parafulva S. YAB1 | Decarboxylation | PFOA | 133 |
| Pseudomonas aeruginosa S.HJ4 | C-C bond cleavage | PFOS | 10 |
| Pseudomonas plecoglossicida 2.4-D | Decarboxylation, desulphonation | PFOS | 134 |
| Gordonia sp. S. NB4-1Y | Desulphonation | FTSA, FTAB | 135 |
| Mycobacterium vaccae | Dechlorination | FTOH | 136 |
Polymeric and non-polymeric PFAS classification and examples (7, 11)
| Perfluoroalkyl Substances (PerFASs) | Acronym | Formula | Examples | |
|---|---|---|---|---|
| Non-polymeric PFAS | Perfluoroalkyl acids | PFAAs | CnF2n+1R | PFHxS, PFOA |
| Perfluoroalakane sulphonates | PFSAs | CnF2n+1SO3- | PFOS | |
| Perfluorocarboxylic acids | PFCAs | CnF2n+1COO- | C8-PFPA | |
| Perfluoroalkyl phosphonic acids | PFPAs | CnF2n+1(O)P(OH)O- | C8-PFPiA | |
| Perfluoroalkane sulphonamides | FASA | CnF2n+1SO2NH2 | FOSA | |
| Perfluoroalkyl ether acids | PFEAs | CnF2n+1O-CmF2m+1 | GenX | |
| Perfluoroalkyl sulphonamideotic acids | FASAAs | CnF2n+1SO2NHCH2COOH | FOSE, MeFOSA | |
| Polyfluoroalkyl Substances (PolyFASs) | ||||
| Fluorotelomer alcohols | FT | CnF2n+ 1CH2CH2OH | FTO | |
| Polyfluoroalkyl phosphoric acid esters | PAPs | (O)P(OH)3-X(OCH2CH2CnF2n+1)x | diPAP | |
| Fluorortelomer saturated aldehydes | FTALs | CnF2n+1CH2CHO | 8:2 FTAL | |
| Fluorotelomer unsaturated aldehydes | FTUALs | CnF2n+1CF=CHCHO | 4,8-Dioxa-3H-perfluorononoate | |
| Polymeric PFAAS | Fluoropolymers | FPs | PFTE | |
| Perfluoropolyethers | PFPEs | HOCH2O-(CmF2mO)n-CH2OH | PFPE-BP | |
| Side-chain fluorinated aromatics | sc-F | CnF2n+1-aromatic rings | Fluoriated methacrylate | |