Have a personal or library account? Click to login
Comments on “Wi-Fi technology and human health impact: a brief review of current knowledge” published in the June 2022 issue of Archives Cover

Comments on “Wi-Fi technology and human health impact: a brief review of current knowledge” published in the June 2022 issue of Archives

Open Access
|Sep 2022

References

  1. Prlić I, Šiško J, Varnai VM, Pavelić L, Macan J, Kobešćak S, Hajdinjak M, Jurdana M, Cerovac Z, Zauner B, Surić Mihić M, Cvijetić Avdagić S. Wi-Fi technology and human health impact: a brief review of current knowledge. Arh Hig Rada Toksikol 2022;73:94–106. doi: 10.2478/aiht-2022-73-3402
  2. Ramirez-Vazquez R, Escobar I, Franco T, Arribas E. Physical units to report intensity of electromagnetic wave. Environ Res 2022;204:112341. doi: 10.1016/j.envres.2021.112341
  3. Khalid M, Mee T, Peyman A, Addison D, Calderon C, Maslanyj M, Mann S. Exposure to radio frequency electromagnetic fields from wireless computer networks: duty factors of Wi-Fi devices operating in schools. Prog Biophys Mol Biol 2011;107:412–20. doi: 10.1016/j.pbiomolbio.2011.08.004
  4. Peyman A, Khalid M, Calderon C, Addison D, Mee T, Maslanyj M, Mann S. Assessment of exposure to electromagnetic fields from wireless computer networks (Wi-Fi) in schools; results of laboratory measurements. Health Phys 2011;100:594–612. doi: 10.1097/HP.0b013e318200e203
  5. Joseph W, Frei P, Rooesli M, Thuroczy G, Gajsek P, Trcek T, Bolte J, Vermeeren G, Mohler E, Juhasz P, Finta V, Martens L. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environ Res 2010;110:658–63. doi: 10.1016/j.envres.2010.06.009
  6. Vermeeren G, Markakis I, Goeminne F, Samaras T, Martens L, Joseph W. Spatial and temporal RF electromagnetic field exposure of children and adults in indoor microenvironments in Belgium and Greece. Prog Biophys Mol Biol 2013;113:254–63. doi: 10.1016/j.pbiomolbio.2013.07.002
  7. Verloock L, Joseph W, Goeminne F, Martens L, Verlaek M, Constandt K. Assessment of radio frequency exposures in schools, homes, and public places in Belgium. Health Phys 2014;107:503–13. doi: 10.1097/HP.0000000000000149
  8. Gledhill M. Exposures to radiofrequency fields from WiFi in New Zealand schools. EMF Services. Report 2014/02 [displayed 10 August 2022]. Available at https://www.health.govt.nz/system/files/documents/publications/wifi-in-nz-schools.pdf
  9. Karipidis K, Henderson S, Wijayasinghe D, Tjong L, Tinker R. Exposure to radiofrequency electromagnetic fields from Wi-Fi in Australian schools. Radiat Prot Dosimetry 2017;175:432–9. doi: 10.1093/rpd/ncw370
  10. Roser K, Schoeni A, Struchen B, Zahner M, Eeftens M, Fröhlich J, Röösli M. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents. Environ Int 2017;99:303–14. doi: 10.1016/j.envint.2016.12.008
  11. Kurnaz C, Engiz BK, Bozkurt MC. Measurement and evaluation of electric field strength levels in primary and secondary schools in a pilot region. Radiat Prot Dosimetry 2018;179:282–90. doi: 10.1093/rpd/ncx275
  12. Kurnaz C, Engiz BK, Kose U. An empirical study: The impact of the number of users on electric field strength of wireless communications. Radiat Prot Dosimetry 2018;182:494–501. doi: 10.1093/rpd/ncy107
  13. Fernandez M, Guerra D, Gil U, Trigo I, Pena I, Arrinda A. Measurements and analysis of temporal and spatial variability of WiFi exposure levels in the 2.4 GHz frequency band. Measurement 2020;149:106970. doi: 10.1016/j.measurement.2019.106970
  14. Hardell L, Carlberg M, Koppel T, Hedendahl L. High radiofrequency radiation at Stockholm Old Town: An exposimeter study including the Royal Castle, Supreme Court, three major squares and the Swedish Parliament. Mol Clin Oncol 2017;6:462–76. doi: 10.3892/mco.2017.1180
  15. Bhatt CR, Redmayne M, Billah B, Abramson MJ, Benke G. Radiofrequency-electromagnetic field exposures in kindergarten children. J Expo Sci Environ Epidemiol 2017;27:497–504. doi: 10.1038/jes.2016.55
  16. Hamiti E, Ahma L, Kukaj M, Maloku E. Measurements and analysis of personal exposure to RF-EMF inside and outside school buildings: a case study at a Kosovo School. IEEE Access 2022;10:52866–75. doi: 10.1109/ACCESS.2022.3174223
  17. Ramirez-Vazquez R, Arabasi S, Al-Taani H, Sbeih S, Gonzalez-Rubio J, Escobar I, Arribas E. Georeferencing of personal exposure to radiofrequency electromagnetic fields from Wi-Fi in a university area. Int J Environ Res Public Health 2020;17:1898. doi: 10.3390/ijerph17061898
  18. Ramirez-Vazquez R, Escobar I, Thielens A, Arribas E. Measurements and analysis of personal exposure to radiofrequency electromagnetic fields at outdoor and indoor school buildings: a case study at a Spanish school. IEEE Access 2020;8:195692–702. doi: 10.1109/ACCESS.2020.3033800
  19. Hedendahl LK, Carlberg M, Koppel T, Hardell L. Measurements of radiofrequency radiation with a body-borne exposimeter in Swedish schools with Wi-Fi. Front Public Health 2017;5:279. doi: 10.3389/fpubh.2017.00279
  20. Hamiti E, Ibrani M, Ahma L, Dragusha S, Halili R. Comparative analysis of personal exposure levels induced by long-term evolution 1800 Re-farming and other RF sources in an urban environment. IET Microw Antennas Propag 2018;12:1185–90. doi: 10.1049/iet-map.2017.0859
  21. Ibrani M, Hamiti E, Ahma L, Shala B. Assessment of personal radio frequency electromagnetic field exposure in specific indoor workplaces and possible worst-case scenarios. AEU - Int J Electron Commun 2016;70:808–13. doi: 10.1016/j.aeue.2016.03.007
  22. Gallastegi M, Huss A, Santa-Marina L, Aurrekoetxea JJ, Guxens M, Ellen Birks L, Ibarluzea J, Guerra D, Röösli M, Jiménez-Zabala A. Children’s exposure assessment of radiofrequency fields: comparison between spot and personal measurements. Environ Int 2018;118:60–9. doi: 10.1016/j.envint.2018.05.028
  23. Lahham A, Sharabati A, ALMasri H. Assessment of public exposure form WLANs in the West Bank-Palestine. Radiat Prot Dosimetry 2017;176:434–8. doi: 10.1093/rpd/ncx028
  24. International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys 2020;118:483–524. doi: 10.1097/HP.0000000000001210
  25. Dongus S, Jalilian H, Schurmann D, Röösli M. Health effects of WiFi radiation: a review based on systematic quality evaluation. Crit Rev Environ Sci Technol 2022;52:3547-66. doi:10.1080/10643389.2021.1951549
  26. Pall ML. Wi-Fi is an important threat to human health. Environ Res 2018;164:405–16. doi: 10.1016/j.envres.2018.01.035
  27. Arribas E, Ramirez-Vazquez R, Escobar I. Comment on “Wi-Fi is an important threat to human health” Environ Res 2018;167:639. doi: 10.1016/j.envres.2018.08.029
  28. Foster KR, Moulder JE. Response to Pall, “Wi-Fi is an important threat to human health”. Environ Res 2019;168:445–7. doi: 10.1016/j.envres.2018.10.016
  29. Chiaraviglio L, Lodovisi C, Franci D, Grillo E, Pavoncello S, Aureli T, Blefari-Melazzi N, Alouini M-S. How Much Exposure from 5G Towers on the Exposure over Children, Teenagers and Sensitive Buildings? [displayed 10 August 2022]. Available at https://arxiv.org/pdf/2201.06944.pdf
DOI: https://doi.org/10.2478/aiht-2022-73-3671 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 241 - 243
Published on: Sep 30, 2022
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Enrique Arribas, Isabel Escobar, Antonio Martinez-Plaza, Raquel Ramirez-Vazquez, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.