References
- Vithanage M, Kumarathilaka P, Oze C, Karunatilake S, Seneviratne M, Hseu ZY, Gunarathne V, Dassanayake M, Ok YS, Rinklebe J. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environ Int 2019;131:104974. doi: 10.1016/j.envint.2019.104974
- Wu W, Qu S, Nel W, Ji J. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China. Sci Total Environ 2020;734:139480. doi: 10.1016/j. scitotenv.2020.139480
- Hanfi MY, Mostafa MYA, Zhukovsky MV. Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environ Monit Assess 2019;192:32. doi: 10.1007/s10661-019-7947-5
- Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. In: Luch A, editor. Molecular, clinical and environmental toxicology. Basel: Springer; 2012. p. 133–64.
- Singh A, Chauhan S, Varjani S, Pandey A, Bhargava PC. Integrated approaches to mitigate threats from emerging potentially toxic elements: A way forward for sustainable environmental management. Environ Res 2022;209:112844. doi: 10.1016/j.envres.2022.112844
- Jeong H, Ryu JS, Ra K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources. Environ Pollut 2022;292:118339. doi: 10.1016/j. envpol.2021.118339
- Mohiuddin AK. Heavy metals: the notorious daredevils of daily personal care products. Int J Pharm Pharm Res 2019;2:8–18. doi: 10.21694/2642-2980.19008
- WHO Regional Office for Europe & Joint WHO/Convention Task Force on the Health Aspects of Air Pollution. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution. Copenhagen: WHO Regional Office for Europe; 2007.
- Fu X, Zhang H, Feng X, Tan Q, Ming L, Liu C, Zhang L. Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes. Environ Sci Technol 2019;53:1947–57. doi: 10.1021/acs.est.8b06736
- Natasha, Shahid M, Khalid S, Saleem M. Unrevealing arsenic and lead toxicity and antioxidant response in spinach: a human health perspective. Environ Geochem Health 2022;44:487–96. doi: 10.1007/ s10653-021-00818-0
- Alina M, Azrina A, Mohd Yunus A, Mohd Zakiuddin S, Mohd Izuan Effendi H, Muhammad Rizal R. Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. Int Food Res J 2012;19:135–40 [displayed 25 October 2022]. Available at http://www.ifrj.upm.edu.my/19%20(01)%202011/(18)IFRJ-2010-235%20Alina.pdf
- Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014;7:60–72. doi: 10.2478/intox-2014-0009
- Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN. Mechanism and health effects of heavy metal toxicity in humans. In: Karcioglu O, Arslan B, editors. Poisoning in the modern world - new tricks for an old dog? London: IntechOpen; 2019. doi: 10.5772/intechopen.82511
- Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics 2018;6(4):65. doi: 10.3390/toxics6040065
- Leonard SS, Bower JJ, Shi X. Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses. Mol Cell Biochem 2004;255:3–10. doi: 10.1023/b:mcbi.0000007255.72746.a6
- Zhu Y, Costa M. Metals and molecular carcinogenesis. Carcinogenesis 2020;41:1161–72. doi: 10.1093/carcin/bgaa076
- Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods 2020;30:167–76. doi: 10.1080/15376516.2019.1701594
- ARSDR Agency for Toxic Substances and Disease Registry. ATSDR’s Substance Priority List, 2019 [displayed 08 September 2022]. Available at https://www.atsdr.cdc.gov/spl/index.html
- Briffa J. Heavy Metals in Maltese Agricultural Soil. [Master thesis]. Malta: University of Malta; 2020.
- Chung JY, Yu SD, Hong YS. Environmental source of arsenic exposure. J Prev Med Public Health 2014;47:253–7. doi: 10.3961/jpmph.14.036
- Matta G, Gjyli L. Mercury, lead and arsenic: impact on environment and human health. J Chem Pharm Sci 2016;9:718–25 [displayed 25 October 2022]. Available at https://jchps.com/issues/Volume%209_Issue%202/jchps%209(2)%2010%20Gagan%20Matta.pdf
- Kuivenhoven M, Mason K. Arsenic Toxicity. [Updated 2022 Jun 21]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan [displayed 27 October 2022]. Available at https://www.ncbi.nlm.nih.gov/books/NBK541125/
- Chávez-Capilla T. The need to unravel arsenolipid transformations in humans. DNA Cell Biol 2022;41:64–70. doi: 10.1089/dna.2021.0476
- Sanyal T, Bhattacharjee P, Paul S, Bhattacharjee P. Recent advances in arsenic research: significance of differential susceptibility and sustainable strategies for mitigation. Front Public Health 2020;8:464. doi: 10.3389/fpubh.2020.00464
- Pakulska D, Czerczak S. Hazardous effects of arsine: a short review. Int J Occup Med Environ Health 2006;19:36–44. doi: 10.2478/v10001-006-0003-z
- Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 2000;57:73–85. doi: 10.1136/oem.57.2.73
- Zuzolo D, Cicchella D, Demetriades A, Birke M, Albanese S, Dinelli E, Lima A, Valera P, De Vivo B. Arsenic: Geochemical distribution and age-related health risk in Italy. Environ Res 2020;182:109076. doi: 10.1016/j.envres.2019.109076
- Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691
- Blessing Ebele O. Mechanisms of arsenic toxicity and carcinogenesis. Afr J Biochem Res 2009;3(5):232–7.
- Twaddle NC, Vanlandingham M, Beland FA, Doerge DR. Metabolism and disposition of arsenic species from controlled dosing with dimethylarsinic acid (DMAV) in adult female CD-1 mice. V. Toxicokinetic studies following oral and intravenous administration. Food Chem Toxicol 2019;130:22–31. doi: 10.1016/j.fct.2019.04.045
- Yu H, Liu S, Li M, Wu B. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity. Environ Geochem Health 2016;38:339–51. doi: 10.1007/s10653-015-9742-8
- Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, Wang H, Pi J, Xu Y. The role of reactive oxygen species in arsenic toxicity. Biomolecules 2020;10(2):240. doi: 10.3390/biom10020240
- Kligerman A, Tennant A. Insights into the carcinogenic mode of action of arsenic. Toxicol Appl Pharmacol 2007;222:281–8. doi: 10.1016/j.taap.2006.10.006
- Ng JC. Environmental contamination of arsenic and its toxicological impact on humans. Environ Chem 2005;2:146–60. doi: 10.1071/EN05062
- Kitchin KT, Conolly R. Arsenic-induced carcinogenesis - oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 2010;23:327–35. doi: 10.1021/tx900343d
- Palma-Lara I, Martínez-Castillo M, Quintana-Pérez JC, Arellano-Mendoza MG, Tamay-Cach F, Valenzuela-Limón OL, García-Montalvo EA, Hernández-Zavala A. Arsenic exposure: a public health problem leading to several cancers. Regul Toxicol Pharmacol 2020;110:104539. doi: 10.1016/j.yrtph.2019.104539
- Zhou Q, Xi S. A review on arsenic carcinogenesis: epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018;99:78–88. doi: 10.1016/j.yrtph.2018.09.010
- Rhodes CE, Denault D, Varacallo M. Physiology, Oxygen Transport. [Updated 2021 Nov 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan [displayed 27 October 2022]. Available at https://www.ncbi.nlm.nih.gov/books/NBK538336/
- Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 2002;133:1–16. doi: 10.1016/s0378-4274(02)00084-x
- Kulshrestha A, Jarouliya U, Prasad G, Flora S, Bisen PS. Arsenic-induced abnormalities in glucose metabolism: biochemical basis and potential therapeutic and nutritional interventions. World J Transl Med 2014;3:96–111. doi: 10.5528/wjtm.v3.i2.96
- Fan C, Liu G, Long Y, Rosen B, Cai Y. Thiolation in arsenic metabolism: a chemical perspective. Metallomics 2018;10:1368–82. doi: 10.1039/c8mt00231b
- Walton FS, Harmon AW, Paul DS, Drobná Z, Patel YM, Styblo M. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol 2004;198:424–33. doi: 10.1016/j.taap.2003.10.026
- Stýblo M, Venkatratnam A, Fry RC, Thomas DJ. Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects. Arch Toxicol 2021;95:1547–72. doi: 10.1007/s00204-021-03028-w
- Srivastava S, Flora SJ. Arsenicals: toxicity, their use as chemical warfare agents, and possible remedial measures. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. Cambridge: Academic Press; 2020. p. 303–19.
- Liu Y, Zhao H, Wang Y, Guo M, Mu M, Xing M. Arsenic (III) and/ or copper (II) induces oxidative stress in chicken brain and subsequent effects on mitochondrial homeostasis and autophagy. J Inorg Biochem 2020;211:111201. doi: 10.1016/j.jinorgbio.2020.111201
- Li JX, Shen YQ, Cai BZ, Zhao J, Bai X, Lu YJ, Li XQ. Arsenic trioxide induces the apoptosis in vascular smooth muscle cells via increasing intracellular calcium and ROS formation. Mol Biol Rep 2010;37:1569–76. doi: 10.1007/s11033-009-9561-z
- Lynn S, Gurr JR, Lai HT, Jan KY. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 2000;86:514–9. doi: 10.1161/01.res.86.5.514
- Liu SX, Athar M, Lippai I, Waldren C, Hei TK. Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci USA 2001;98:1643–8. doi: 10.1073/pnas.98.4.1643
- Tam LM, Wang Y. Arsenic exposure and compromised protein quality control. Chem Res Toxicol 2020;33:1594–604. doi: 10.1021/acs. chemrestox.0c00107
- Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2016;90:1–37. doi: 10.1007/s00204-015-1579-5
- Ran S, Liu J, Li S. A Systematic review of the various effect of arsenic on glutathione synthesis in vitro and in vivo. Biomed Res Int 2020;2020:9414196. doi: 10.1155/2020/9414196
- Singh R, Misra AN, Sharma P. Effect of arsenate toxicity on antioxidant enzymes and expression of nicotianamine synthase in contrasting genotypes of bioenergy crop Ricinus communis. Environ Sci Pollut Res Int 2021;28:31421–30. doi: 10.1007/s11356-021-12701-7
- Askevold JE. Arsenic and ADHD-Perinatal exposure to Arsenic species in breastmilk and ADHD in adolescents [Project thesis]. Oslo: Faculty of Medicine, University of Oslo; 2022 [displayed 27 October 2022]. Available at https://www.duo.uio.no/bitstream/handle/10852/94054/1/Kappe-Arsenic-og-ADHD.pdf
- Meyer S, Schulz J, Jeibmann A, Taleshi MS, Ebert F, Francesconi KA, Schwerdtle T. Arsenic-containing hydrocarbons are toxic in the in vivo model Drosophila melanogaster. Metallomics 2014;6:2010–4. doi: 10.1039/c4mt00249k
- Niehoff AC, Schulz J, Soltwisch J, Meyer S, Kettling H, Sperling M, Jeibmann A, Dreisewerd K, Francesconi KA, Schwerdtle T, Karst U. Imaging by elemental and molecular mass spectrometry reveals the uptake of an arsenolipid in the brain of Drosophila melanogaster. Anal Chem 2016;88:5258–63. doi: 10.1021/acs.analchem.6b00333
- Xue XM, Xiong C, Yoshinaga M, Rosen B, Zhu YG. The enigma of environmental organoarsenicals: insights and implications. Crit Rev E nv iron Sc i Te c h no l 2 0 2 2 ; 5 2 : 3 8 3 5 – 6 2 . do i : 10.1080/10643389.2021.1947678
- Mac Monagail M, Morrison L. Arsenic speciation in a variety of seaweeds and associated food products. Compr Anal Chem 2019;85:267–310. 10.1016/bs.coac.2019.03.005
- Flora SJ. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011;51:257–81. doi : 10.1016/j.freeradbiomed.2011.04.008
- Liu G, Song Y, Li C, Liu R, Chen Y, Yu L, Huang Q, Zhu D, Lu C, Yu X, Xiao C, Liu Y. Arsenic compounds: the wide application and mechanisms applied in acute promyelocytic leukemia and carcinogenic toxicology. Eur J Med Chem 2021;221:113519. doi: 10.1016/j. ejmech.2021.113519
- Martin EM, Fry RC. Environmental influences on the epigenome: exposure- associated DNA methylation in human populations. Annu Rev Public Health 2018;39:309–33. doi: 10.1146/annurev-publhealth-040617-014629
- Nuta O, Bouffler S, Lloyd D, Ainsbury E, Sepai O, Rothkamm K. Investigating the impact of long term exposure to chemical agents on the chromosomal radiosensitivity using human lymphoblastoid GM1899A cells. Sci Rep 2021;11:12616. doi: 10.1038/s41598-021-91957-y
- Patlolla AK, Todorov TI, Tchounwou PB, van der Voet G, Centeno JA. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats. Microchem J 2012;105:101–7. doi: 10.1016/j.microc.2012.08.013
- Demanelis K, Argos M, Tong L, Shinkle J, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Shahriar H, Islam T, Rahman M, Yunus M, Graziano JH, Broberg K, Engström K, Jasmine F, Ahsan H, Pierce BL. Association of arsenic exposure with whole blood DNA methylation: an epigenome-wide study of Bangladeshi adults. Environ Health Perspect 2019;127(5):057011. doi: 10.1289/EHP3849
- Tam LM, Price NE, Wang Y. Molecular mechanisms of arsenic-induced disruption of DNA repair. Chem Res Toxicol 2020;33:709–26. doi: 10.1021/acs.chemrestox.9b00464
- Moura DJ, Péres VF, Jacques RA, Saffi J. Heavy metal toxicity: oxidative stress parameters and DNA repair. In: Gupta D, Sandalio L, editors. Metal toxicity in plants: perception, signaling and remediation. Berlin, Heidelberg: Springer; 2012. p. 187–205 doi: 10.1007/978-3-642-220814_9
- Kligerman AD, Doerr CL, Tennant AH, Harrington-Brock K, Allen JW, Winkfield E, Poorman-Allen P, Kundu B, Funasaka K, Roop BC, Mass MJ, DeMarini DM. Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. Environ Mol Mutagen 2003;42:192–205. doi: 10.1002/em.10192
- Renu K, Saravanan A, Elangovan A, Ramesh S, Annamalai S, Namachivayam A, Abel P, Madhyastha H, Madhyastha R, Maruyama M, Balachandar V, Valsala Gopalakrishnan A. An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci 2020;260:118438. doi: 10.1016/j.lfs.2020.118438
- Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogenesis - a health risk assessment and management approach. Mol Cell Biochem 2004;255:47–55. doi: 10.1023/b:mcbi.0000007260.32981.b9
- Nasrollahzadeh A, Bashash D, Kabuli M, Zandi Z, Kashani B, Zaghal A, Mousavi SA, Ghaffari SH. Arsenic trioxide and BIBR1532 synergistically inhibit breast cancer cell proliferation through attenuation of NF-κB signaling pathway. Life Sci 2020;257:118060. doi: 10.1016/j.lfs.2020.118060
- Wei M, Liu J, Xu M, Rui D, Xu S, Feng G, Ding Y, Li S, Guo S. Divergent effects of arsenic on NF-κB signaling in different cells or tissues: a systematic review and meta-analysis. Int J Environ Res Public Health 2016;13(2):163. doi: 10.3390/ijerph13020163
- Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009;1(4):a000034. doi: 10.1101/cshperspect.a000034
- Jin W, Xue Y, Xue Y, Han X, Song Q, Zhang J, Li Z, Cheng J, Guan S, Sun S, Chu L. Tannic acid ameliorates arsenic trioxide-induced nephrotoxicity, contribution of NF-κB and Nrf2 pathways. Biomed Pharmacother 2020;126:110047. doi: 10.1016/j.biopha.2020.110047
- Karin M, Delhase M. The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. Semin Immunol 2000;12:85–98. doi: 10.1006/smim.2000.0210
- Chen F, Shi X. Signaling from toxic metals to NF-κB and beyond: not just a matter of reactive oxygen species. Environ Health Perspect 2002;110(Suppl 5):807–11. doi: 10.1289/ehp.02110s5807
- Medda N, De SK, Maiti S. Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. Ecotoxicol Environ Saf 2021;208:111752. doi: 10.1016/j.ecoenv.2020.111752
- He X, Ma Q. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation. Mol Pharmacol 2009;76:1265–78. doi: 10.1124/mol.109.058453
- He X, Wang L, Szklarz G, Bi Y, Ma Q. Resveratrol inhibits paraquat-induced oxidative stress and fibrogenic response by activating the nuclear factor erythroid 2-related factor 2 pathway. J Pharmacol Exp Ther 2012;342:81–90. doi: 10.1124/jpet.112.194142
- Zhong L, Hao H, Chen D, Hou Q, Zhu Z, He W, Sun S, Sun M, Li M, Fu X. Arsenic trioxide inhibits the differentiation of fibroblasts to myofibroblasts through nuclear factor erythroid 2-like 2 (NFE2L2) protein and the Smad2/3 pathway. J Cell Physiol 2019;234:2606–17. doi: 10.1002/jcp.27073
- Massrieh W, Derjuga A, Blank V. Induction of endogenous Nrf2/small maf heterodimers by arsenic-mediated stress in placental choriocarcinoma cells. Antioxid Redox Signal 2006;8:53–9. doi: 10.1089/ars.2006.8.53
- Wang L, Kou MC, Weng CY, Hu LW, Wang YJ, Wu MJ. Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 2012;86:879–96. doi: 10.1007/s00204-012-0845-z
- Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. Rev Environ Health 2017;32:93–103. doi: 10.1515/reveh-2016-0025
- Thomas DJ. Arsenic methylation - Lessons from three decades of research. Toxicology 2021;457:152800. doi: 10.1016/j.tox.2021.152800
- Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 2012;32:643–53. doi: 10.1002/jat.2717
- Mukhopadhyay P, Greene RM, Pisano MM. Cigarette smoke induces proteasomal-mediated degradation of DNA methyltransferases and methyl CpG-/CpG domain-binding proteins in embryonic orofacial cells. Reprod Toxicol 2015;58:140–8. doi: 10.1016/j. reprotox.2015.10.009
- Pogribna M, Hammons G. Epigenetic effects of nanomaterials and nanoparticles. J Nanobiotechnology 2021;19:2. doi: 10.1186/s12951-020-00740-0
- Li H, He J, Ju P, Zhong X, Liu J. Studies on the mechanism of arsenic trioxide-induced apoptosis in HepG2 human hepatocellular carcinoma cells. Chin J Clin Oncol 2008;5:22–5. doi: 10.1007/s11805-008-0022-6
- Cai X, Yu L, Chen Z, Ye F, Ren Z, Jin P. Arsenic trioxide-induced upregulation of miR-1294 suppresses tumor growth in hepatocellular carcinoma by targeting TEAD1 and PIM1. Cancer Biomark 2020;28:221–30. doi: 10.3233/cbm-190490
- Jing-Jing Z, Xiao-Jie C, Wen-Dong Y, Ying-Hui W, Hang-Sheng Z, Hong-Yue Z, Zhi-Hong Z, Bin-Hui W, Fan-Zhu. Fabrication of a folic acid-modified arsenic trioxide prodrug liposome and assessment of its anti-hepatocellular carcinoma activity. Dig Chin Med 2020;3:260–74. doi: 10.1016/j.dcmed.2020.12.005
- Zhang F, Duan J, Song H, Yang L, Zhou M, Wang X. Combination of canstatin and arsenic trioxide suppresses the development of hepatocellular carcinoma. Drug Dev Res 2021;82:430–9. doi: 10.1002/ ddr.21766
- Chen Y, Li H, Chen D, Jiang X, Wang W, Li D, Shan H. Hypoxic hepatocellular carcinoma cells acquire arsenic trioxide resistance by upregulating HIF-1α expression. Dig Dis Sci 2022;67:3806–16. doi: 10.1007/s10620-021-07202-z
- Fang Y, Zhang Z. Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett 2020;25:44. doi: 10.1186/s11658-020-00236-7
- Siddique R, Khan S, Bai Q, Li H, Ullah MW, Xue M. Arsenic Trioxide-based nanomedicines as a therapeutic combination approach for treating gliomas: a review. Curr Nanosci 2021;17:406–17. doi: 10.217 4/1573413716999201207142810
- Sönksen M, Kerl K, Bunzen H. Current status and future prospects of nanomedicine for arsenic trioxide delivery to solid tumors. Med Res Rev 2021;42:374–98. doi: 10.1002/med.21844
- Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Arsenic: a review on a great health issue worldwide. Appl Sci 2022;12(12):6184. doi: 10.3390/app12126184
- Gamboa-Loira B, Cebrián ME, Franco-Marina F, López-Carrillo L. Arsenic metabolism and cancer risk: a meta-analysis. Environ Res 2017;156:551–8. doi: 10.1016/j.envres.2017.04.016
- Nurchi VM, Djordjevic AB, Crisponi G, Alexander J, Bjørklund G, Aaseth J. Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 2020;10(2):235. doi: 10.3390/biom10020235
- Wani A, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol 2015;8:55–64. doi: 10.1515/intox-2015-0009
- Çelebi H, Gök G, Gök O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium(II), nickel(II), and zinc(II) heavy metal ions. Sci Rep 2020;10(1):17570. doi: 10.1038/s41598-020-74553-4
- World Health Organization. Lead poisoning [displayed 5 September 2022]. Available at https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health
- Charkiewicz AE, Backstrand JR. Lead toxicity and pollution in Poland. Int J Environ Res Public Health 2020;17(12):4385. doi: 10.3390/ijerph17124385
- Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 2018;119:157–84. doi: 10.1002/jcb.26234
- Samarghandian S, Shirazi FM, Saeedi F, Roshanravan B, Pourbagher-Shahri AM, Khorasani EY, Farkhondeh T, Aaseth JO, Abdollahi M, Mehrpour O. A systematic review of clinical and laboratory findings of lead poisoning: lessons from case reports. Toxicol Appl Pharmacol 2021;429:115681. doi: 10.1016/j.taap.2021.115681
- Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM. Lead toxicity update. A brief review. Med Sci Monit 2005;11(10):RA329–36. PMID: 16192916
- Centers for Disease Control and Prevention. Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention - Report of the Advisory Committee on Childhood Lead Poisoning Prevention of the Centers for Disease Control and Prevention, 2012 [displayed 28 October 2022]. Available at http://www.cdc.gov/nceh/lead/acclpp/final_document_030712.pdf
- Raymond J, Brown MJ. Childhood blood lead levels in children aged <5 years - United States, 2009–2014. MMWR Surveill Summ 2017;66:1–10. doi: 10.15585/mmwr.ss6603a1
- Dignam T, Kaufmann RB, LeStourgeon L, Brown MJ. Control of lead sources in the United States, 1970–2017: Public health progress and current challenges to eliminating lead exposure. J Public Health Manag Pract 2019;25(Suppl 1):S13–22. doi: 10.1097/phh.0000000000000889
- Flannery BM, Middleton KB. Updated interim reference levels for dietary lead to support FDA’s Closer to Zero action plan. Regul Toxicol Pharmacol 2022;133:105202. doi: 10.1016/j.yrtph.2022.105202
- Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011;15(7):1957–97. doi: 10.1089/ars.2010.3586
- Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci 2017;54:506–28. doi: 10.1080/10408363.2017.1408562
- Flora G, Gupta D, Tiwari A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol 2012;5(2):47–58. doi: 10.2478/v10102-012-0009-2
- Obeng-Gyasi E. Lead exposure and oxidative stress - A life course approach in US adults. Toxics 2018;6(3):42. doi: 10.3390/toxics6030042
- Jiang X, Xing X, Zhang Y, Zhang C, Wu Y, Chen Y, Meng R, Jia H, Cheng Y, Zhang Y, Su J. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol Environ Saf 2021;207:111231. doi: 10.1016/j.ecoenv.2020.111231
- Gurer-Orhan H, Sabır HU, Özgüneş H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology 2004;195:147–54. doi: 10.1016/j.tox.2003.09.009
- La-Llave-León O, Méndez-Hernández EM, Castellanos-Juárez FX, Esquivel-Rodríguez E, Vázquez-Alaniz F, Sandoval-Carrillo A, García-Vargas G, Duarte-Sustaita J, Candelas-Rangel JL, Salas-Pacheco JM. Association between blood lead levels and delta-aminolevulinic acid dehydratase in pregnant women. Int J Environ Res Public Health 2017;14(4):432. doi: 10.3390/ijerph14040432
- Andrade V, Mateus ML, Batoréu, MC, Aschner M, Dos Santos AM. Urinary delta-ALA: a potential biomarker of exposure and neurotoxic effect in rats co-treated with a mixture of lead, arsenic and manganese. Neurotoxicology 2013;38:33–41. doi: 10.1016/j.neuro.2013.06.003
- Ibrahem S, Hassan M, Ibraheem Q, Arif K. Genotoxic effect of lead and cadmium on workers at wastewater plant in Iraq. J Environ Public Health 2020;2020:9171027. doi: 10.1155/2020/9171027
- Sridevi SK, Umamaheswari S. Human exposure to lead, mechanism of toxicity and treatment strategy - a review. J Clin Diagnostic Res 2020;14(12):LE01–5. doi: 10.7860/JCDR/2020/45615.14345
- Patra R, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int 2011;2011:457327. doi: 10.4061/2011/457327
- Wyparło-Wszelaki M, Wąsik M, Machoń-Grecka A, Kasperczyk A, Bellanti F, Kasperczyk S, Dobrakowski M. Blood magnesium level and selected oxidative stress indices in lead-exposed workers. Biol Trace Elem Res 2021;199:465–72. doi: 10.1007/s12011-020-02168-x
- Adeyemi WJ, Abdussalam TA, Abdulrahim A, Olayaki LA. Elevated, sustained, and yet reversible biotoxicity effects of lead on cessation of exposure: Melatonin is a potent therapeutic option. Toxicol Ind Health 2020;36:477–86. doi: 10.1177/0748233720937199
- Virgolini MB, Aschner M. Molecular mechanisms of lead neurotoxicity. Adv Neurotoxicol 2021;5:159–213. doi: 10.1016/bs.ant.2020.11.002
- Jangid AP, Shekhawat V, Pareek H, Yadav D, Sharma P, John P. Effect of lead on human blood antioxidant enzymes and glutathione. Int J Biochem Res Rev 2016;13(1):1–9.
- Kshirsagar MS, Patil JA, Patil A. Increased blood lead level induces oxidative stress and alters the antioxidant status of spray painters. J Basic Clin Physiol Pharmacol 2020;31(2):20180229. doi: 10.1515/jbcpp-2018-0229
- Sadhu HG, Amin BK, Parikh DJ, Sathawara NG, Mishra U, Virani BK, Lakkad BC, Shivgotra VK, Patel S. Poisoning of workers working in small lead-based units. Indian J Occup Environ Med 2008;12:139–41. doi: 10.4103/0019-5278.44697
- Sirati-Sabet M, Asadikaram G, Ilghari D, Gheibi N, Torkman F, Abdolvahabi Z, Khabbaz F. The effect of lead on erythrocyte glucose-6-phosphate dehydrogenase activity in rats. Biotech Health Sci 2014;1(1):e19192. doi: 10.17795/bhs-19192
- Flora S, Mittal M, Mehta A. Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 2008;128:501–23. PMID: 19106443
- Lachant NA, Tomoda A, Tanaka KR. Inhibition of the pentose phosphate shunt by lead: a potential mechanism for hemolysis in lead poisoning. Blood 1984;63:518–24. doi: 10.1182/blood.V63.3.518.518
- Moniuszko-Jakoniuk J, Jurczuk M, Brzóska MM. Evaluation of glutathione-related enzyme activities in the liver and kidney of rats exposed to lead and ethanol. Pharmacol Rep 2007;59(Suppl 1):217–25.
- Dobrakowski M, Pawlas N, Kasperczyk A, Kozłowska A, Olewińska E, Machoń-Grecka A, Kasperczyk S. Oxidative DNA damage and oxidative stress in lead-exposed workers. Hum Exp Toxicol 2017;36:744–54. doi: 10.1177/0960327116665674
- Simons T. Lead-calcium interactions and lead toxicity. In: Baker PF, editor. Calcium in drug actions. Handbook of experimental pharmacology. Vol 83. Berlin, Heidelberg: Springer; 1988. p. 509–25. doi: 10.1007/978-3-642-71806-9_24
- Rădulescu A, Lundgren S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep 2019;9:14225. doi: 10.1038/s41598-019-50654-7
- García-Lestón J, Méndez J, Pásaro E, Laffon B. Genotoxic effects of lead: an updated review. Environ Int 2010;36:623–36. doi: 10.1016/j. envint.2010.04.011
- Sachdeva C, Thakur K, Sharma A, Sharma KK. Lead: tiny but mighty poison. Indian J Clin Biochem 2018;33:132–46. doi: 10.1007/s12291-017-0680-3
- Das U, De M. Chromosomal study on lead exposed population. Int J Hum Genet 2013;13:53–8. doi: 10.1080/09723757.2013.11886197
- Pinto D, Ceballos JM, García G, Guzmán P, Del Razo LM, Vera E, Gómez H, García A, Gosebatt ME. Increased cytogenetic damage in outdoor painters. Mutat Res 2000;467:105–11. doi: 10.1016/s1383-5718(00)00024-3
- Rajah T, Ahuja Y. In vivo genotoxic effects of smoking and occupational lead exposure in printing press workers. Toxicol Lett 1995;76:71–5. doi: 10.1016/0378-4274(94)03200-9
- Duydu Y, Süzen HS. Influence of δ-aminolevulinic acid dehydratase (ALAD) polymorphism on the frequency of sister chromatid exchange (SCE) and the number of high-frequency cells (HFCs) in lymphocytes from lead-exposed workers. Mutat Res 2003;540:79–88. doi: 10.1016/s1383-5718(03)00172-4
- Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan AT, Nilsson R. Genotoxic effects of occupational exposure to lead and cadmium. Mutat Res 2003;540:19–28. doi: 10.1016/S1383-5718(03)00167-0
- Wiwanitkit V, Suwansaksri J, Soogarun S. White blood cell sister chromatid exchange among a sample of Thai subjects exposed to lead: lead-induced genotoxicity. Toxicol Environ Chem 2008;90:765–8. doi: 10.1080/02772240701712758
- Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R, Bigatti MP, Bolognesi C, Cebulska-Wasilewska A, Fabianova E, Fucic A, Hagmar L, Joksic G, Martelli A, Migliore L, Mirkova E, Scarfi MR, Zijno A, Norppa H, Fenech M. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 2007;28:625–31. doi: 10.1093/carcin/bgl177
- Celik A, Öğenler O, Çömelekoğlu Ü. The evaluation of micronucleus frequency by acridine orange fluorescent staining in peripheral blood of rats treated with lead acetate. Mutagenesis 2005;20:411–5. doi: 10.1093/mutage/gei055
- Nersesyan A, Kundi M, Waldherr M, Setayesh T, Mišík M, Wultsch G, Filipic M, Mazzaron Barcelos GR, Knasmueller S. Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium. Mutat Res Rev Mutat Res 2016;770:119–39. doi: 10.1016/j.mrrev.2016.04.002
- Balasubramanian B, Meyyazhagan A, Chinnappan AJ, Alagamuthu KK, Shanmugam S, Al-Dhabi NA, Mohammed Ghilan AK, Duraipandiyan V, Valan Arasu M. Occupational health hazards on workers exposure to lead (Pb): A genotoxicity analysis. J Infect Public Health 2020;13:527–31. doi: 10.1016/j.jiph.2019.10.005
- Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2’-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009;27:120–39. doi: 10.1080/10590500902885684
- Liu X, Wu J, Shi W, Shi W, Liu H, Wu X. Lead induces genotoxicity via oxidative stress and promoter methylation of DNA repair genes in human lymphoblastoid TK6 cells. Med Sci Monit 2018;24:4295–304. doi: 10.12659/msm.908425
- Buha A, Baralić K, Djukic-Cosic D, Bulat Z, Tinkov A, Panieri E, Saso L. The role of toxic metals and metalloids in Nrf2 signaling. Antioxidants 2021;10(5):630. doi: 10.3390/antiox10050630
- Aglan HS, Gebremedhn S, Salilew-Wondim D, Neuhof C, Tholen E, Holker M, Schellander K, Tesfaye D. Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells. Cell Tissue Res 2020;380:643–55. doi: 10.1007/s00441-020-03177-x
- Alotaibi MF, Al-Joufi F, Abou Seif HS, Alzoghaibi MA, Djouhri L, Ahmeda AF, Mahmoud AM. Umbelliferone inhibits spermatogenic defects and testicular injury in lead-intoxicated rats by suppressing oxidative stress and inflammation, and improving Nrf2/HO-1 signaling. Drug Des Devel Ther 2020;14:4003–19. doi: 10.2147/dddt.s265636
- World Health Organization, International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Inorganic and Organic Lead Compounds. Vol. 87. Inorganic and Organic Lead, 2006 [displayed 28 October 2022]. Available at https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono87.pdf
- Wallace DR, Djordjevic AB. Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. Curr Opin Toxicol 2020;19:72–9. 10.1016/j.cotox.2020.01.001
- Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol 2019;59:537–54. doi: 10.1146/annurev-pharmtox-010818-021031
- Fraga CG, Onuki J, Lucesoli F, Bechara EJ, Di Mascio P. 5-Aminolevulinic acid mediates the in vivo and in vitro formation of 8-hydroxy-2’-deoxyguanosine in DNA. Carcinogenesis 1994;15:2241–4. doi: 10.1093/carcin/15.10.2241
- Xu X, Liao W, Lin Y, Dai Y, Shi Z, Huo X. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. Environ Geochem Health 2018;40:1481–94. doi: 10.1007/s10653-017-9997-3
- Gorini F, Scala G, Cooke MS, Majello B, Amente S. Towards a comprehensive view of 8-oxo-7,8-dihydro-2’-deoxyguanosine: highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. DNA Repair 2021;97:103027. doi: 10.1016/j.dnarep.2020.103027
- Cogoi S, Ferino A, Miglietta G, Pedersen EB, Xodo LE. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res 2018;46:661–76. doi: 10.1093/nar/gkx1142
- Fleming AM, Ding Y, Burrows CJ. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci USA 2017;114:2604–9. doi: 10.1073/pnas.1619809114
- Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020;29:101398. doi: 10.1016/j.redox.2019.101398