Have a personal or library account? Click to login
Phosphogypsum and its potential use in Croatia: challenges and opportunities Cover

Phosphogypsum and its potential use in Croatia: challenges and opportunities

Open Access
|Jun 2021

References

  1. International Atomic Energy Agency (IAEA). IAEA Safety Glossary: 2018 Edition [displayed 22 April 2021]. Available at https://www-pub.iaea.org/MTCD/Publications/PDF/PUB 1830_web.pdf
  2. Rutherford PM, Dudas MJ, Samek RA. Environmental impacts of phosphogypsum. Sci Total Environ 1994;149:1–38. doi: 10.1016/0048-9697(94)90002-7
  3. International Atomic Energy Agency (IAEA). Radiation Protection and Management of NORM Residues in the Phosphate Industry. No. 78, 2013 [displayed 22 April 2021]. Available at https://www-pub.iaea.org/MTCD/Publications/PDF/ Pub1582_web.pdf
  4. United States Environmental Protection Agency (US EPA). Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). US EPA [displayed 22 April 2021]. Available at https://www.epa.gov/radiation/technologically-enhanced-naturally-occurring-radioactive-materials-tenorm
  5. Marović G, Senčar J. 226Ra and possible water contamination due to phosphate fertilizer production. J Radioanal Nucl Chem 1995;200:9–18. doi: 10.1007/BF02164816
  6. Saadaoui E, Ghazel N, Ben Romdhane C, Massoudi N. Phosphogypsum: potential uses and problems-a review. Int J Environ Stud 2 0 1 7 ; 7 4 : 5 5 8 – 6 7 . doi: 10.1080/00207233.2017.1330582
  7. Bituh T, Vučić Z, Marović G, Prlić I. A new approach to determine the phosphogypsum spread from the deposition site into the environment. J Hazard Mater 2013;261:584–92. doi: 10.1016/j.jhazmat.2013.08.012
  8. Bituh T, Marović G, Franić Z, Senčar J, Bronzović M. Radioactive contamination in Croatia by phosphate fertilizer production. J Hazard Mater 2009;162:1199–203. doi: 10.1016/j.jhazmat.2008.06.005
  9. Schroeyers W, editor. Naturally Occurring Radioactive Materials in Construction: Integrating Radiation Protection in Reuse (COST Action TU1301 NORM4BUILDING), 2017, Cambridge: Woodhead Publishing; 2017.
  10. Odluka o donošenju Nacionalnog programa provedbe Strategije zbrinjavanja radioaktivnog otpada, iskorištenih izvora i istrošenog nuklearnog goriva (Program za razdoblje do 2025. godine s pogledom do 2060. godine) [National program on implementation of Radioactive Waste, Disused Sources and Spent Nuclear Fuel Disposal Strategy In Croatia (Program for period until 2025 with overview on 2060), in Croatian]. Narodne novine 100/2018.
  11. Bituh T, Petrinec B, Skoko B, Vučić Z, Marović G. Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment. Arh Hig Rada Toksikol 2015;66:31–40. doi: 10.1515/aiht-2015-66-2587
  12. Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A. Environmental impact and management of phosphogypsum. J Environ Manage 2009;90:2377–86. doi: 10.1016/j. jenvman.2009.03.007
  13. Rutherford PM, Dudas MJ, Arocena JM. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci Total Environ 1996;180:201–9. doi: 10.1016/0048-9697(95)04939-8
  14. Mas JL, San Miguel EG, Bolívar JP, Vaca F, Perez-Moreno JP. An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the south-west of Spain. Sci Total Environ 2006;364:55–66. doi: 10.1016/j. scitotenv.2005.11.006
  15. Bolívar JP, Martín JE, García-Tenorio R, Pérez-Moreno JP, Mas JL. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant. Appl Radiat Isot 2009;67:345–56. doi: 10.1016/j.apradiso.2008.10.012
  16. Beretka J, Mathew PJ. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 1985;48:87–95. doi: 10.1097/00004032-198501000-00007
  17. Szajerski P. Distribution of uranium and thorium chains radionuclides in different ractions of phosphogypsum grains. Environ Sci Pollut Res 2020;27:15856–15868. doi: 10.1007/s11356-020-08090-y
  18. Trevisi R, Risica S, D’Alessandro M, Paradiso D, Nuccetelli C. Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ Radioact 2012;105:11–20. doi: 10.1016/j. jenvrad.2011.10.001
  19. Kuzmanović P, Todorović N, Forkapić S, Petrović LF, Knežević J, Nikolov J, Miljević B. Radiological characterization of phosphogypsum produced in Serbia. Radiat Phys Chem 2020;166:108463. doi: 10.1016/j. radphyschem.2019.108463
  20. Roper AR, Stabin MG, Delapp RC, Kosson DS. Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples. Health Phys 2013;104:264–9. doi: 10.1097/HP.0b013e318279f3bf
  21. Hull CD, Burnett WC. Radiochemistry of Florida phosphogypsum. J Environ Radioact 1996;32:213–38. doi: 10.1016/0265-931X(95)00061-E
  22. Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M. Measurement and Calculation of Radon Releases from NORM Residues. Techn Rep Ser No. 474, 2013 [displayed 22 April 2021]. Available at https://www-pub.iaea.org/MTCD/Publications/PDF/trs474_webfile.pdf
  23. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation - Annex B. Exposures from natural radiation sources. Vol. I. New York: Unitet Nations; 2010.
  24. Kovler K. Radioactive materials. Chapter 8. In: Torgal FP, Jalali S, Fucic A, editors. Toxicity of building material. Cambridge: Woodhead Publishing Limited; 2012, p. 196–240.
  25. Pérez-López R, Nieto JM, López-Coto I, Aguado JL, Bolívar JP, Santisteban M. Dynamics of contaminants in phosphogypsum of the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Appl Geochemistry 2010;25:705–15. doi: 10.1016/j. apgeochem.2010.02.003
  26. Zmemla R, Chaurand P, Benjdidia M, Elleuch B, Yves J. Characterization and pH dependent leaching behavior of Tunisian phosphogypsum. Am Sci Res J Eng Technol Sci 2016;24:230–44.
  27. Franković Mihelj N, Ukrainczyk N, Leaković S, Šipušić J. Waste phosphogypsum - Toward sustainable reuse in calcium sulfoaluminate cement based building materials. Chem Biochem Eng Q 2013;27:219–26.
  28. Leaković S, Lisac H, Vukadin R. Primjena industrijskog otpada CaF2 u procesu ozelenjivanja odlagališta fosfogipsa [Application of industrial waste CaF2 for vegetative covering of phosphogypsum disposal site, in Croatian]. Kem Ind 2012;61:505–12. doi: 10.15255/KUI.2012.001
  29. Hilton J. Towards a management and regulatory strategy for phosphoric acid and phosphogypsum as co-products. In: Naturally Occurring Radioactive Material (NORM V) Proceedings of an international symposium; 19–22 March 2007; Seville, Spain. Vienna: IAEA; p. 281–95.
  30. Kovler K, Perevalov A, Steiner V, Rabkin E. Determination of the radon diffusion length in building materials using electrets and activated carbon. Health Phys 2004;86:505–16. doi: 10.1097/00004032-200405000-00007
  31. Kovler K. Measurements of radon exhalation rate for monitoring cement hydration. Mat Struct 2007;40:419–30. doi:10.1617/s11527-006-9149-1
  32. Pravilnik o praćenju stanja radioaktivnosti u okolišu [Ordinance on environmental monitoring of radioactivity, in Croatian]. Narodne novine 40/2018.
  33. European Commission (EC). Radiological protection principles concerning the natural radioactivity of building materials. Radiation Protection 112. Luxembourg: EC; 1999.
  34. Abril JM, García-Tenorio R, Enamorado SM, Hurtado MD, Andreu L, Delgado A. The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226Ra, 238U and Cd contents in soils and tomato fruit. Sci Total Environ 2008;403:80–8. doi: 10.1016/j.scitotenv.2008.05.013
  35. Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M. The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact 2006;89:188–98. doi: 10.1016/j.jenvrad.2006.05.005
  36. Mesić M, Brezinščak L, Zgorelec Ž, Perčin A, Šestak I, Bilandžija D, Trdenić M, Lisac H. The application of phosphogypsum in agriculture. Agric Conspec Sci 2016;81:7–13.
  37. Elloumi N, Zouari M, Chaari L, Abdallah F Ben, Woodward S, Kallel m. Effect of phosphogypsum on growth, physiology, and the antioxidative defense system in sunflower seedlings. Environ Sci Pollut Res Int 2015;22:14829–40. doi: 10.1007/s11356-015-4716-z
  38. Enamorado S, Abril JM, Delgado A, Más JL, Polvillo O, Quintero JM. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. J Hazard Mater 2014;266:122–31. doi: 10.1016/j.jhazmat.2013.12.019
  39. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom [displayed 22 April 2021]. Available at http://eur-lex.europa.eu/Lex Uri Serv/Lex Uri Serv.do?uri=OJ:L:2014:013:FULL:EN:PDF
  40. Pravilnik o uvjetima i mjerama zaštite od ionizirajućeg zračenja za obavljanje djelatnosti s izvorima ionizirajućeg zračenja [Ordinance on the conditions and measures of ionising radiation protection for performing activities involving ionising radiation sources, in Croatian]. Narodne novine 53/2018.
  41. Strategija zbrinjavanja radioaktivnog otpada, iskorištenih izvora i istrošenog nuklearnog goriva [Radioactive waste, disused sources and spent nuclear fuel disposal strategy, in Croatian]. Narodne novine 125/2014.
  42. Plan gospodarenja otpadom u Republici Hrvatskoj za razdoblje 2007.–2015. godine [Waste management plan of the Republic of Croatia for 2007–2015, in Croatian]. Narodne novine 85/2007; 126/2010; 31/2011; 46/2015.
  43. Odluka o donošenju Plana gospodarenja otpadom Republike Hrvatske za razdoblje 2017.–2022. godine [Waste management plan of the Republic of Croatia for the Period 2017–2022, in Croatian]. Narodne novine 3/2017.
  44. Council Directive 2016/52/Euratom of 15 January 2016 laying down maximum permitted levels of radioactive contamination of food and feed following a nuclear accident or any other case of radiological emergency, and repealing Regulation (Euratom) No 3954/87 and Commission Regulations (Euratom) No 944/89 and (Euratom) No 770/90 [displayed 31 May 2021]. Available at https://eur-lex.europa.eu/legal-content/hr/TXT/?uri=CELEX%3A32016R0052
  45. Pravilnik o obavješćivanju, registriranju i odobrenjima te prometu izvorima ionizirajućeg zračenja [Ordinance on notification, registration, approval and placing on the market of sources of ionising radiation, in Croatian]. Narodne novine 54/2018.
DOI: https://doi.org/10.2478/aiht-2021-72-3504 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 93 - 100
Submitted on: Nov 1, 2020
Accepted on: May 1, 2021
Published on: Jun 28, 2021
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Tomislav Bituh, Branko Petrinec, Božena Skoko, Dinko Babić, Davor Rašeta, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.