Have a personal or library account? Click to login
Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents Cover

Carbamate group as structural motif in drugs: a review of carbamate derivatives used as therapeutic agents

Open Access
|Dec 2020

References

  1. Ghosh AK, Brindisi M. Urea derivatives in modern drug discovery and medicinal chemistry. J Med Chem 2020;63:2751–88. doi: 10.1021/acs.jmedchem.9b01541
  2. Chaturvedi D. Role of organic carbamates in anticancer drug design. In: Brahmachari G, editor. Chemistry and pharmacology of naturally occurring bioactive compounds. 1st ed. Boca Raton (FL): CRC Press; 2013. p. 117–40. doi: 10.1201/b13867-6
  3. Strzelczyk A, Mann C, Willems LM. Rosenow F, Bauer S. Cenobamate for the treatment of focal epilepsies. Expert Opin Pharmacother 2020. doi: 10.1080/14656566.2020.1803830
  4. Keam SJ. Cenobamate: First approval. Drugs 2020;80:73–8. doi: 10.1007/s40265-019-01250-6
  5. Adams P, Baron FA. Esters of carbamic acid. Chem Rev 1965;65:567–602. doi: 10.1021/cr60237a002
  6. Eddleston M, Clark RF. Insecticides: organic phosphorus compounds and carbamates. In: Hoffman RS, Howland MA, Lewin NA, Nelson LS, editors. Goldfrank’s toxicologic emergencies. 9th ed. New York: McGraw-Hill; 2011. p. 1450–60.
  7. Chaturvedi D. Perspectives on the synthesis of organic carbamates. Tetrahedron 2012;68:15–45. doi: 10.1016/j. tet.2011.10.001
  8. Ghosh AK, Brindisi M. Organic carbamates in drug design and medicinal chemistry. J Med Chem 2015;58:2895–940. doi: 10.1021/jm501371s
  9. DeRuiter J. Amides and related functional groups. Principles of Drug Action 1, 2005 [displayed 20 April 2019]. Available at http://webhome.auburn.edu/~deruija/pda1_amides.pdf
  10. Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol 2008;12:292–6. doi: 10.1016/j.cbpa.2008.03.009
  11. Karaman R. Prodrugs design based on inter- and intramolecular chemical processes. Chem Biol Drug Des 2013;82:643–68. doi: 10.1111/cbdd.12224
  12. Yılmaz S, Akbaba J, Özgeriş B, Polat Köse L, Göksu S, Gülçin I, Alwasel SH, Supuran CT. Synthesis and inhibitory properties of some carbamates on carbonic anhydrase and acetylcholine esterase. J Enzyme Inhib Med Chem 2016;31:1484–91. doi: 10.3109/14756366.2016.1149477
  13. Moraczewski AL, Banaszynski LA, From AM, White CE, Smith BD. Using hydrogen bonding to control carbamate C-N rotamer equilibria. J Org Chem 1998;63:7258–62. doi: 10.1021/jo980644d
  14. Kaur D, Sharma P, Bharatam PV. Amide resonance in thioand seleno- carbamates: A theoretical study. J Mol Struct 2005;757:149–53. doi: 10.1016/j.theochem.2005.09.019
  15. Deetz MJ, Forbes CC, Jonas M, Malerich JP, Smith BD, Wiest O. Unusually low barrier to carbamate C-N rotation. J Org Chem 2002;67:3949–52. doi: 10.1021/jo025554u
  16. Jung T, Do HJ, Son J, Song JH, Cha W, Kim YJ, Lee KK, Kwak K. Hindered C-N bond rotation in triazinyl dithiocarbamates. J Mol Struct 2018;1152:215–22. doi: 10.1016/j.molstruc.2017.09.063
  17. Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 2003;103:2475–532. doi: 10.1021/cr0104375
  18. Lauvergnat D, Hiberty PC. Role of conjugation in the stabilities and rotational barriers of formamide and thioformamide. An ab initio valence-bond study. J Am Chem Soc 1997;119:9478–82. doi: 10.1021/ja9639426
  19. Marcovici-Mizrahi D, Gottlieb HE, Marks V, Nudelman A. On the stabilization of the syn-rotamer of amino acid carbamate derivatives by hydrogen bonding. J Org Chem 1996;61:8402–6. doi: 10.1021/jo961446u
  20. Woolley GA, Jaikaran ASI, Zhang Z, Peng S. Design of regulated ion channels using measurements of cis-trans isomerization in single molecules. J Am Chem Soc 1995;117:4448–54. doi: 10.1021/ja00121a002
  21. Vacondio F, Silva C, Mor M, Testa B. Qualitative structure-metabolism relationship in the hydrolysis of carbamates. Drug Metab Rev 2010;42:551–89. doi: 10.3109/03602531003745960
  22. Reiner E, Škrinjarić-Špoljar M. Enzimska razgradnja karbamata [Carbamate metabolism, in Croatian]. Arh Hig Rada Toksikol 1968;19:251–8 [displayed 20 March 2019]. Available at https://hrcak.srce.hr/176452
  23. Mattarei A, Azzolini M, Zoratti M, Biasutto L, Paradisi C. N-monosubstituted methoxy-oligo(ethylene glycol) carbamate ester prodrugs of resveratrol. Molecules 2015;20:16085–102. doi: 10.3390/molecules200916085
  24. Parise Filho R, Polli MC, Garcia M, Barberato-Filho S. Prodrugs available on the Brazilian pharmaceutical market and their corresponding bioactivation pathways. Braz J Pharm Sci 2010;46:393–420. doi: 10.1590/S1984-82502010000300003
  25. King AM, Aaron CK. Organophosphate and carbamate poisoning. Emerg Med Clin North Am 2015;33:133–51. doi: 10.1016/j.emc.2014.09.010
  26. Maki T, Tsuritani T, Yasukata T. A mild method for the synthesis of carbamateprotected guanidines using the Burgess reagent. Org Lett 2014;16:1868–71. doi: 10.1021/ol5002208
  27. Hong JY, Seo UR, Chung YK. Synthesis of carbamates from amines and N-tosylhydrazones under atmospheric pressure of carbon dioxide without an external base. Org Chem Front 2016;3:764–7. doi: 10.1039/c6qo00111d
  28. Sogorb MA, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 2002;128:215–28. doi: 10.1016/s0378-4274(01)00543-4
  29. Nunes G, Barceló D. Analysis of carbamate insecticides in foodstuffs using chromatography and immunoassay techniques. Trends Anal Chem1999;18:99–107. doi: 10.1016/S0165-9936(98)00076-4
  30. Wang Q, Lemley AT. Competitive degradation and detoxification of carbamate insecticides by membrane anodic fenton treatment. J Agric Food Chem 2003;51:5382–90. doi: 10.1021/jf034311f
  31. Plastics Europe. Plastics-the facts 2014/2015. An analysis of European plastics production, demand and waste data [displayed 17 May 2020]. Available at https://www.plasticseurope.org/application/files/5515/1689/9220/2014plastics_the_facts_PubFeb2015.pdf
  32. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaray AR. Polyurethane types, synthesis and applications-a review. RSC Adv 2016;6;114453–82. doi: 10.1039/C6RA14525F
  33. Pittelkow M, Lewinsky R, Christensen JB. Selective synthesis of carbamate protected polyamines using alkyl phenyl carbonates. Synthesis 2002;15:2195–2202. doi: 10.1055/s-2002-34859
  34. Dhanapal D, Rebheka G, Palanivel S, Srinivasan AK. A comparative study on modified epoxy and glycidyl carbamate coatings for corrosion and fouling prevention. Surf Innov 2015;3:127–39. doi: 10.1680/si.13.00025
  35. Grube A, Donaldson D, Kiely T, Wu L. Pesticides industry sales and usage 2006 and 2007 market estimates [displayed 15 May 2020]. Availabile at https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2006-and-2007-market-estimates
  36. Wharfe J. Historical perspective and overview. In: Thompson KC, Wadhia K, Loibner AP, editors. Environmental toxicity testing. 1st ed. Oxford: Blackwell Publishing Ltd.; 2005. p. 1–32.
  37. Proudfoot A. The early toxicology of physostigmine. Toxicol Rev 2006;25:99–138. doi: 10.2165/00139709-200625020-00004
  38. Gupta RC. Classification and uses of organophosphates and carbamates. In: Gupta RC, editor. Toxicology of oganophosphate & carbamate compounds. 1st ed. Waltham (MA): Academic Press; 2006. p. 5–24. doi: 10.1016/b978-012088523-7/50003-X
  39. Sun B, Straubinger RM, Lovell JF. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res 2018;11:5193–218. doi: 10.1007/s12274-018-2171-0
  40. Avendaño C, Menéndez JC. Anticancer drugs that interact with the DNA minor groove. In: Avendaño C, Menéndez JC, editors. Medicinal chemistry of anticancer drugs. 2nd ed. Elsevier Science, 2015. p. 243–71. doi: 10.1016/B978-0-444-62649-3.00006-5
  41. Meanwell NA, Belema M. The discovery and development of daclatasvir: an inhibitor of the hepatitis C virus NS5A replication complex. Top Med Chem 2019;32:27–56. doi: 10.1007/7355_2018_47
  42. Daniel-Mwambete K, Torrado S, Cuesta-Bandera C, Ponce-Gordo F, Torrado J. The effect of solubilization on the oral bioavailability of three benzimidazole carbamate drugs. Int J Pharm 2004;272:29–36. doi: 10.1016/j.ijpharm.2003.11.030
  43. See S, Ginzburg R. Choosing a skeletal muscle relaxant. Am Fam Physician 2008;78:365–70. PMID: 18711953
  44. Kung CH, Kwon CH. Carbamate derivatives of felbamate as potential anticonvulsant agents. Med Chem Res 2009;19:498–513. doi: 10.1007/s00044-009-9208-6
  45. Aícua-Rapún I, André P, Rossetti AO, Ryvlin P, Hottinger AF, Decosterd LA, Buclin T, Novy J. Therapeutic drug monitoring of newer antiepileptic drugs: a randomized trial for dosage adjustment. Ann Neurol 2020;87:22–9. doi: 10.1002/ana.25641
  46. Flynn S, Babi A. Anticonvulsants. In: Dowd F, Johnson B, Mariotti A, authors. Pharmacology and therapeutics for dentistry. 7th ed. Chapter 12. St. Louis: Elsevier Inc.; 2017. p. 176–92.
  47. Rautio J, Meanwell N, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 2018;17:559–87. doi: 10.1038/nrd.2018.46
  48. Ray S, Chaturvedi D. Application of organic carbamates in drug design. Part 1: anticancer agents - recent reports. Drugs Fut 2004;29:343. doi: 10.1358/dof.2004.029.04.787236
  49. Kim RY, Yau MC, Galpin JD, Seebohm G, Ahern CA, Pless SA, Kurata HT. Atomic basis for therapeutic activation of neuronal potassium channels. Nat Commun 2015;6:8116. doi: 10.1038/ncomms9116
  50. Montero A, Fossella F, Hortobagyi G, Valero V. Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol 2005;6:229–39. doi: 10.1016/S1470-2045(05)70094-2
  51. Wolkenberg SE, Boger DL. Mechanisms of in situ activation for DNA-targeting antitumor agents. Chem Rev 2002;102:2477–96. doi: 10.1021/cr010046q
  52. Verweij J. Docetaxel (TaxotereTM a new anti-cancer drug with promising potential? Br J Cancer 1994;70:183–4. doi: 10.1038/bjc.1994.276
  53. Lv Z, Chu Y, Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 2015;7:95–104. doi: 10.2147/HIV.S79956
  54. Zeldin RK, Petruschke RA. Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J Antimicrob Chemother 2004;53:4–9. doi: 10.1093/jac/dkh029
  55. Achenbach CJ, Darn KM, Murphy RL. Atazanavir/ritonavir-based combination antiretroviral therapy for treatment of HIV-1 infection in adults. Future Virol 2011;6:157–77. doi: 10.2217/fvl.10.89
  56. Hull MW, Montaner JS. Ritonavir-boosted protease inhibitors in HIV therapy. Ann Med 2011;43:375–88. doi: 10.3109/07853890.2011.572905
  57. Croom KF, Dhilloh S, Keam SJ. Atazanavir: a review of its use in the management of HIV-1 infection. Drugs 2009;69:1107–40. doi: 10.2165/00003495-200969080-00009
  58. Ghosh AK, Dawson ZL, Mitsuya H. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV. Bioorg Med Chem 2007;15:7576–80. doi: 10.1016/j.bmc.2007.09.010
  59. Shi LL, Dong J, Ni H, Geng J, Wu T. Felbamate as an add-on therapy for refractory partial epilepsy. Cochrane Database Syst Rev 2017;7(7):CD008295. doi: 10.1002/14651858. CD008295.pub4
  60. Glue P, Banfield CR, Perhach JL, Mather GG, Racha JK, Levy RH. Pharmacokinetic interactions with felbamate: In vitro-in vivo correlation. Clin Pharmacokinet 1997;33:214–24. doi: 10.2165/00003088-199733030-00004
  61. Swinyard EA, Sofia RD, Kupferberg HJ. Comparative anticonvulsant activity and neurotoxicity of felbmate and four prototype antiepileptic drugs in mice and rats. Epilepsia 1986;27:27–34. doi: 10.1111/j.1528-1157.1986.tb03497.x
  62. Rho JM, Donevan SD, Rogawski MA. Barbiturate-like actions of the propanediol dicarbamates felbamate and meprobamate. J Pharmacol Exp Ther 1997;280:1383–91. PMID: 9067327
  63. Rho JM, Donevan SD, Rogawski MA. Mechanism of action of the anticonvulsant felbamate: opposing effects on N-methyl-D-aspartate and γ-aminobutyric acidA receptors. Ann Neurol 1994;35:229–34. doi: 10.1002/ana.410350216
  64. Kume A, Greenfield Jr LJ, Macdonald RL, Albin RL. Felbamate inhibits [3H]t-butylbicycloorthobenzoate (TBOB) binding and enhances Cl- current at the gamma-aminobutyric AcidA (GABAA) receptor. J Pharmacol Exp Ther 1996;277:1784–92. PMID: 8667250
  65. Ticku MK, Kamatchi GL, Sofia RD. Effect of anticonvulsant felbamate on GABAA receptor system. Epilepsia 1991;32:389–91. doi: 10.1111/j.1528-1157.1991.tb04667.x
  66. Wisden W, Laurie UJ, Monyer H, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992;12:1040–62. doi: 10.1523/JNEUROSCI.12-03-01040.1992
  67. Porter RJ, Nohria V, Rundfeldt C. Retigabine. Neurotherapeutics 2007;4:149–54. doi: 10.1016/j. nurt.2006.11.012
  68. Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 KCNQ2 channel by binding to its activation gate. Mol Pharmacol 2005;67:1009–17. doi: 10.1124/mol.104.010793
  69. Sharma R, Nakamura M, Neupane C, Jeon BH, Shinc H, Melnick SM, Glenn KJ, Jang IS, Park JB. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur J Pharmacol 2020:879:173117. doi: 10.1016/j.ejphar.2020.173117
  70. Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2020;19:147–57. doi: 10.1080/14740338.2020.1721456
  71. Giacobini E, editor. Cholinesterases and Cholinesterase Inhibitors. London: Martin Dunitz Ltd; 2000.
  72. Bosak A, Katalinić M, Kovarik Z. Cholinesterases: structure, role, and inhibition. Arh Hig Rada Toksikol 2011;62:175–90. doi: 10.2478/10004-1254-62-2011-2107
  73. Plata-Salaman CR, Zhao B, Teyman RE. Carbamate compounds for use in preventing or treating neurodegenerative disorders. Unites States Patent Application Publication 2002;US 2002/0165273 A1 [displayed 23 November 2020]. Available at https://patents.google.com/patent/US20020165273A1/en
  74. Darvesh S, Darvesh KV, McDonald RS, Mataija D, Walsh R, Mothana S, Lockridge O, Martin E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J Med Chem 2008;51:4200–12. doi: 10.1021/jm8002075
  75. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer Report 2016: improving helatchare for people living with dementia: coverage, quality and costs now and in the future, Alzheimer’s disease International (ADI), 2016 [displayed 23 November 2020]. Availabile at https://www.alz.co.uk/research/WorldAlzheimerReport2016.pdf
  76. Kovacs GG, Adle-Biassette H, Milenkovic I, Cipriani S, van Scheppingen J, Aronica E. Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience 2014;269:152–72. doi: 10.1016/j. neuroscience.2014.03.045
  77. Camps P, Muñoz-Torrero D. Cholinergic drugs in pharmacotherapy of Alzheimer’s disease. Mini Rev Med Chem 2002;2:11–25. doi: 10.2174/1389557023406638
  78. Bitzinger DI, Gruber M, Tummler S, Malsy M, Seyfried T, Weber F, Redel A, Graf BM, Zausig YA. In vivo effects of neostigmine and physostigmine on neutrophil functions and evaluation of acetylcholinesterase and butyrylcholinesterase as inflammatory markers during experimental sepsis in rats. Mediat Inflamm 2019;4:ID8274903. doi: 10.1155/2019/8274903
  79. Frascogna N. Physostigmine: is there a role for this antidote in pediatric poisonings? Curr Opin Pediatr 2007;19:201–5. doi: 10.1097/MOP.0b013e32802c7be1
  80. Trevisani GT, Hyman NH, Church JM. Neostigmine: safe and effective treatment for acute colonic pseudo-obstruction. Dis Colon Rectum 2000;43:599–603. doi: 10.1007/BF02235569
  81. Moghul S, Wikinson D. Use of acetylcholinesterase inhibitors in Alzheimer’s disease. Expert Rev Neurother 2001;1:61–9. doi: 10.1586/14737175.1.1.61
  82. Kamal MA, Klein P, Luo WM, Li YZ, Holloway HW, Tweedie D, Greig NH. Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine. Neurochem Res 2008;33;745–53. doi: 10.1007/s11064-007-9490-y
  83. Yu QS, Holloway HW, Utsuki T, Brossi A, Greig NH. Synthesis of novel phenserine-based-selective inhibitors of butyrylcholinesterase for Alzheimer’s disease. J Med Chem 1999;42:1855–61. doi: 10.1021/jm980459s
  84. Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu Q-S, Mamczarz J, Holloway HW, Giordano T, Chen DM, Furukawa K, Sambamurti K, Brossi A, Lahiri DK. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA 2005;102:17213–8. doi: 10.1073/pnas.0508575102
  85. Guo T, Gu H, Hobbs DW, Rokosz LL, Stauffer TM, Jacob B, Clader JW. Design, synthesis, and evaluation of tetrahydroquinoline and pyrrolidine sulfonamide carbamates as γ-secretase inhibitors. Bioorg Med Chem Lett 2007;17:3010–3. doi: 10.1016/j.bmcl.2007.03.055
  86. Kamal MA, Qu X, Yu Q, Tweedie D, Holloway HW, Li Y, Tan Y, Greig NH. Tetrahydrofurobenzofuran cymserine, a potent butyrylcholinesterase inhibitor and experimental Alzheimer drug candidate, enzyme kinetic analysis. J Neural Transm (Vienna) 2008;115:889–98. doi: 10.1007/s00702-008-0022-y
  87. Alter MJ. Epidemiology of hepatitis C virus infection. World J Gastroenterol 2007;13:2436–41. doi: 10.3748/wjg.v13. i17.2436
  88. Chary A, Holodniy M. Recent advances in hepatitis C virus treatment: review of HCV protease inhibitor clinical trials. Rev Recent Clin Trials 2010;5:158–73. doi: 10.2174/157488710792007293
  89. Hwang J, Huang L, Cordek DG, Vaughan R, Reynolds SL, Kihara G, Raney KD, Kao CC, Cameron CE. Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. J Virol 2010;84:12480–91 doi: 10.1128/JVI.01319-10
  90. Shi ST, Polyak SJ, Tu H, Taylor DR, Gretch DR, Lai MM. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 2002;292:198–210. doi: 10.1006/viro.2001.1225
  91. Kohler JJ, Nettles JH, Amblard F, Hurwitz SJ, Bassit L, Stanton RA, Ehteshami M, Schinazi RF. Approaches to hepatitis C treatment and cure using NS5A inhibitors. Infect Drug Resist 2014:7:41–56. doi: 10.2147/IDR.S36247
  92. Lee C. Daclatasvir: potential role in hepatitis C. Drug Des Devel Ther 2013;7:1220–33. doi: 10.2147/DDDT.S40310
  93. Cada DJ, Kim AP, Baker DE. Elbasvir/Grazoprevir. Hosp Pharm 2016;51:665–86. doi: 10.1310/hpj5108-665
  94. Keating GM. Ombitasvir/Paritaprevir/Ritonavir: a review in chronic HCV genotype 4 infection. Drugs 2016;76:1203–11. doi: 10.1007/s40265-016-0612-1
  95. Belema M, Nguyen VN, Bachand C, Deon DH, Goodrich JT, James CA, Lavoie R, Lopez OD, Martel A, Romine JL, Ruediger EH, Snyder LB, St Laurent DR, Yang F, Zhu J, Wong HS, Langley DR, Adams SP, Cantor GH, Chimalakonda A, Fura A, Johnson BM, Knipe JO, Parker DD, Santone KS, Fridell RA, Lemm JA, O’Boyle DR, Colonno RJ, Gao M, Meanwell NA, Hamann LG. Hepatitis C virus NS5A replication complex inhibitors: the discovery of daclatasvir. J Med Chem 2014;57:2013–32. doi: 10.1021/jm401836p
  96. World Health Organization. World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization [displayed 8 December 2020]. Available at: https://apps.who.int/iris/handle/10665/325771
  97. O’Doherty DS, Shields CD. Methocarbamol-new agent in treatment of neurological and neuromuscular diseases. J Am Med Assoc 1958;167:160–3. doi: 10.1001/jama.1958.02990190014003
  98. Anthelmintic benzimidazole carbamates [displayed 20 September 2020]. Available at https://patents.google.com/patent/US4512998A/en
  99. Köhler P. The biochemical basis of anthelmintic action and resistance. Int J Parasitol 2001;31:336–45. doi: 10.1016/s0020-7519(01)00131-x
  100. Campbell WC. The chemotherapy of parasitic infections. J Parasitol 1986;72:45–61. doi: 10.2307/3281795
  101. Giordani C, Marin GH, Perez D, Soraci A, Errecalde J. Mechanism of action of drugs with activity against multicellular parasites. Parazitologija 2017;51:294–316 [displayed 23 November 2020]. Available at http://sedici.unlp.edu.ar/bitstream/handle/10915/98772/Mechanism_of_action_of_drugs_with_activity_against_multicellular_parasites.pdf-PDFA.pdf?sequence=1&isAllowed=y
  102. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J. Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008;7:255–70. doi: 10.1038/nrd2468
  103. Hahn KK, Wolff JJ, Kolaser JM. Pharmacogenetics and irinotecan therapy. Am J Health Syst Pharm 2006;63:2211–7. doi: 10.2146/ajhp060155
  104. Frese S, Diamond B. Structural modification of DNA therapeutic option in SLE. Nat Rev Rheumatol 2011;7:733–8. doi: 10.1038/nrrheum.2011.153
  105. Mathijessen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 2001;7:2182–94. PMID:11489791
  106. Sitar DS. Clinical pharmacokinetics of bambuterol. Clin Pharmacokinet 1996;31:246–56. doi: 10.2165/00003088-199631040-00002
  107. Zhou T, Liu S, Zhao T, Zeng J, He M, Xu B, Qu S, Xu L, Tan W. Chiral analysis of bambuterol, its intermediate and active drug in human plasma by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2015;997:38–44. doi: 10.1016/j.jchromb.2015.05.024
  108. Svensson LA, Tunek A. The design and bioactivation of presystemically stable prodrugs. Drug Metab Rev 1998;19:165–94. doi: 10.3109/03602538809049622
  109. Yaltho TC, Ondo WG. The use of gabapentin enacarbil in the treatment of restless legs syndrome. Ther Adv Neurol Disord 2010;3:269–75. doi: 10.1177/1756285610378059
  110. Guerreiro C, Albuquerque L, Reimão S. Radiation recall myelitis following capecitabine: first case report. Clin Neurol Neurosurg 2020;196:105978. doi: 10.1016/j. clineuro.2020.105978
  111. Terranova-Barberio M, Roca M, Zotti A, Leone A, Bruzzese F, Vitagliano C, Scogliamiglio G, Russo D, D’Angelo G, Franco R, Budillon A, Gennaro E. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget 2016;7:7715–31. doi: 10.18632/oncotarget.6802
  112. Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003;3:330–8. doi: 10.1038/nrc1074
DOI: https://doi.org/10.2478/aiht-2020-71-3466 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 285 - 299
Submitted on: Jul 1, 2020
Accepted on: Dec 1, 2020
Published on: Dec 31, 2020
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Ana Matošević, Anita Bosak, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.