Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2010;2:1106–31. doi: 10.3390/nu2111106
Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol Res 2017;196:44–68. doi: 10.1016/j.micres.2016.12.003
Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 2017;11:57–72. doi: 10.4103/phrev.phrev_21_17
Nohynek LJ, Alakomi HL, Kähkönen MP Heinonen M, Helander IM, Oksman-Caldentey KM, Puupponen-Pimiä RH. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr Cancer 2006;54:18–32. doi: 10.1207/s15327914nc5401_4
Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother 2004;48:1968–73. doi: 10.1128/AAC.48.6.1968-1973.2004
Zhao W, Hu Z, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother 2002;46:2266–8. doi: 10.1128/aac.46.7.2266-2268.2002
de Araujo RS, Barbosa-Filho JM, Scotti MT, Scotti L, da Cruz RM, Falcao-Silva Vdos S, de Siqueira-Júnior JP, Mendonça-Junior FJ. Modulation of drug resistance in Staphylococcus aureus with Coumarin derivatives. Scientifica (Cairo) 2016;2016:6894758. doi: 10.1155/2016/6894758
Klančnik A, Šikić Pogačar M, Trošt K, Tušek Žnidarič M, Možetič Vodopivec B, Smole Možina S. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. J Appl Microbiol 2017;122:65–77. doi: 10.1111/jam.13315
Bubonja M, Mesarić M, Miše A, Jakovac M, Abram M. Utjecaj različitih čimbenika na rezultate testiranja osjetljivosti bakterija disk difuzijskom metodom [Factors affecting the antimicrobial susceptibility testing of bacteria by disc diffusion method, in Croatian]. Med Fluminensis 2008;44:280–4.
King T, Dykes G, Kristianti R. Comparative evaluation of methods commonly used to determine antimicrobial susceptibility to plant extracts and phenolic compounds. J AOAC Int 2008;91:1423–9. doi: 10.1093/jaoac/91.6.1423
Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernández-Gutiérrez A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010;15:8813–26. doi: 10.3390/molecules15128813
Barker C, Park SF. Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl Environ Microbiol 2001;67:1594–600. doi: 10.1128/AEM.67.4.1594-1600.2001
Chatterjee I, Somerville GA, Heilmann C, Sahl HG, Maurer HH, Herrmann M. Very low ethanol concentrations affect the viability and growth recovery in post-stationary-phase Staphylococcus aureus populations. Appl Environ Microbiol 2006;72:2627–36. doi: 10.1128/AEM.72.4.2627-2636.2006
Escribano-Bailon MT, Santos-Buelga C. Polyphenol extraction from foods. In: Santos-Buelga C, Williamson G, editors. Methods in polyphenol analysis. London: The Royal Society of Chemistry; 2003. p. 1–16.
Tambekar DH, Khante BS, Chandak BR, Titare AS, Boralkar SS, Aghadte SN. Screening of antibacterial potentials of some medicinal plants from Melghat Forest in India. Afr J Tradit Complement Altern Med 2009;6:228–32. doi: 10.4314/ajtcam.v6i3.57158
Malik F, Hussain S, Mirza T, Hameed A, Ahmad S, Riaz H, Akhtar Shah P, Usmanghani K. Screening for antimicrobial activity of thirty-three medicinal plants used in the traditional system of medicine in Pakistan. J Med Plants Res 2011;5:3052–60.
Aires A. Phenolics in foods: extraction, analysis and measurements. In: Soto-Hernandez M, Palma-Tenango M, Garcia-Mateos R, editors. Phenolic compounds - natural sources, importance and applications. IntechOpen; 2017. p. 61–88. doi: 10.5772/66889
Tyśkiewicz K, Konkol M, Rój E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 2018;23(10):2625. doi: 10.3390/molecules23102625
Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J Microbiol Biotechnol 2010;26:1533–8. doi: 10.1007/s11274-010-0325-7
Jung CM, Heinze TM, Schnackenberg LK, Mullis LB, Elkins SA, Elkins CA, Steele RS, Sutherland JB. Interaction of dietary resveratrol with animal-associated bacteria. FEMS Microbiol Lett 2009;297:266–73. doi: 10.1111/j.1574-6968.2009.01691.x
Åhman J, Matuschek E, Kahlmeter G. EUCAST evaluation of 21 brands of Mueller-Hinton dehydrated media for disk diffusion testing. Clin Microbiol Infect 2020;26:1412.e1–5. doi: 10.1016/j.cmi.2020.01.018
European Committee on Antimicrobial Susceptibility Testing. Routine and extended internal quality control for MIC determination and disk diffusion as recommended by EUCAST version 10.0 [displayed 29 October 2020]. Available at https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/QC/v_10.0_EUCAST_QC_tables_routine_and_extended_QC.pdf
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk susceptibility tests; approved standard. 13th ed. CLSI standard M02. Wayne (PA):CLSI; 2018.
Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 11th ed. CLSI standard M07. Wayne (PA): CLSI; 2018.
European Committee for Standardization. European standard EN 1276:2009. Chemical disinfectants and antiseptics -Quantitative suspension test for evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and institutional areas. Test method and requirements (phase 2, step 1).
European Committee for Standardization. European standard EN 1500:1997. Chemical disinfectants and antiseptics. Hygienic handrub. Test method and requirements (phase 2/step 2) [displayed 20 December 2019]. Available at https://www.sis.se/api/document/preview/21676/
Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 2014;20:0255–66. doi: 10.1111/1469-0691.12373
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6:71–9. doi: 10.1016/j.jpha.2015.11.005
Bubonja-Sonje M, Giacometti J, Abram M. Antioxidant and antilisterial activity of olive oil, cocoa and rosemary extract polyphenols. Food Chem 2011;127:1821–7. doi: 10.1016/j. foodchem.2011.02.071
Valgas C, de Souza SM, Smânia E, Smânia A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 2007;38:369–80. doi: 10.1590/S1517-83822007000200034
Dahiya P, Purkayastha S. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian J Pharm Sci 2012;74:443–50. doi: 10.4103/0250-474X.108420
Ginovyan M, Petrosyan M, Trchounian A. Antimicrobial activity of some plant materials used in Armenian traditional medicine. BMC Complement Altern Med 2017;17:50. doi: 10.1186/s12906-017-1573-y
Essawi T, Srour M. Screening of some Palestinian medicinal plants for antibacterial activity. J Ethnopharmacol 2000;70:343–9. doi: 10.1016/s0378-8741(99)00187-7
Klancnik A, Piskernik S, Jersek B, Mozina SS. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods 2010;81:121–6. doi: 10.1016/j.mimet.2010.02.004
Hara KY, Mori H. An efficient method for quantitative determination of cellular ATP synthetic activity. J Biomol Screen 2006;11:310–7. doi: 10.1177/1087057105285112
Horváth G, Acs K, Kocsis B. TLC-direct bioautography for determination of antibacterial activity of Artemisia adamsii essential oil. J AOAC Int 2013;96:1209–13. doi: 10.5740/jaoacint.sgehorvath
Nostro A, Germanò MP, D’angelo V, Marino A, Cannatelli MA. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 2000;30:379–84. doi: 10.1046/j.1472-765x.2000.00731.x
Silva MT, Simas SM, Batista TG, Cardarelli P, Tomassini TC. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination. Mem Inst Oswaldo Cruz 2005;100:779–82. doi: 10.1590/s0074-02762005000700018
Rios J, Recio M, Villar A. Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 1988;23:127–49. doi: 10.1016/0378-8741(88)90001-3
Shahverdi AR, Abdolpour F, Monsef-Esfahani HR, Farsam HA. A TLC bioautographic assay for the detection of nitrofurantoin resistance reversal compound. J Chromatogr B 2007;850:528–30. doi:10.1016/j.jchromb.2006.11.011
Polatoglu K, Demirci F, Demirci B, Gören N, Can Baser KH. Antimicrobial activity and essential oil composition of a new T. argyrophyllum (C. Koch) Tvzel var. argyrophyllum chemotype. J Oleo Sci 2010;59:307–13. doi: 10.5650/jos.59.307
Horváth G, Kocsis B, Lemberkovics E, Böszörményi A, Ott P, Móricz A. Detection of antibacterial activity of essential oil components by TLC-bioautography using luminescent bacteria. J Planar Chromatogr 2013;26:114–8. doi: 10.1556/JPC.26.2013.2.2
Golus J, Sawicki R, Widelski J, Ginalska G. The agar microdilution method - a new method for antimicrobial susceptibility testing for essential oils and plant extracts. J Appl Microbiol 2016;121:1291–9. doi: 10.1111/jam.13253
Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 1998;64:711–3. doi: 10.1055/s-2006-957563
Mann CM, Markham JL. A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol 1998; 84: 538 – 44. doi: 10.1046/j.1365-2672.1998.00379.x
Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42:321–4. doi: 10.1016/j.ymeth.2007.01.006
Veiga A, Toledo MDGT, Rossa LS, Mengarda M, Stofella NCF, Oliveira LJ, Gonçalves AG, Murakami FS. Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J Microbiol Methods 2019;162:50–61. doi: 10.1016/j.mimet.2019.05.003
Mohotti S, Rajendran S, Muhammad T, Strömstedt AA, Adhikari A, Burman R, de Silva ED, Göransson U, Hettiarachchi CM, Gunasekera S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J Ethnopharmacol 2020;246:112158. doi: 10.1016/j.jep.2019.112158
Assam JP, Dzoyem JP, Pieme CA, Penlap VB. In vitro antibacterial activity and acute toxicity studies of aqueous-methanol extract of Sida rhombifolia Linn. (Malvaceae). BMC Complement Altern Med 2010;10:40. doi: 10.1186/1472-6882-10-40
Koochak H, Seyyednejad SM, Motamedi H. Preliminary study on the antibacterial activity of some medicinal plants of Khuzestan (Iran). Asian Pac J Trop Med 2010;3:180–4. doi: 10.1016/S1995-7645(10)60004-1
Konaté K, Hilou A, Mavoungou JF, Lepengué AN, Souza A, Barro N, Datté JY, M’batchi B, Nacoulma OG. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains. Ann Clin Microbiol Antimicrob 2012;11:5. doi: 10.1186/1476-0711-11-5
Nsor-Atindana J, Zhong F, Mothibe KJ, Bangoura ML, Lagnika C. Quantification of total polyphenolic content and antimicrobial activity of cocoa Theobroma cacao L.) bean shells. Pak J Nutr 2012;11:574–9. doi: 10.3923/pjn.2012.672.677
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2019;33:13–40. doi: 10.1002/ptr.6208
May J, Chan CH, King A, Williams L, French GL. Time-kill studies of tea tree oils on clinical isolates. J Antimicrob Chemother 2000;45:39–43. doi: 10.1093/jac/45.5.639
Jayaraman P, Sakharkar MK, Lim CS, Tang TH, Sakharkar KR. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int J Biol Sci 2010;6:556–8. doi: 10.7150/ijbs.6.556
Betts JW, Hornsey M, Higgins PG, Lucassen K, Wille J, Salguero FJ, Seifert H, La Ragione RM. Restoring the activity of the antibiotic aztreonam using the polyphenol epigallocatechin gallate (EGCG) against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2019;68:1552–9. doi: 10.1099/jmm.0.001060
Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW. Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 2004;23:462–7. doi: 10.1016/j. ijantimicag.2003.09.027
Rand KH, Houck HJ, Brown P, Bennett D. Reproducibility of the microdilution checkerboard method for antibiotic synergy. Antimicrob Agents Chemother 1993;37:613-5. doi: 10.1128/aac.37.3.613
Mattupalli C, Spraker JE, Berthier E, Charkowski AO, Keller NP, Shepherd RW. A microfluidic assay for identifying differential responses of plant and human fungal pathogens to tobacco phylloplanins. Plant Health Prog 2014;15:130–4. doi: 10.1094/PHP-RS-14-0009
Li H, Torab P, Mach KE, Surrette C, England MR, Craft DW, Thomas NJ, Liao JC, Puleo C, Wong PK. Adaptable microfluidic system for single-cell pathogen classification and antimicrobial susceptibility testing. Proc Natl Acad Sci U S A 2019;116:10270–9. doi: 10.1073/pnas.1819569116
Schumacher A, Vranken T, Malhotra A, Arts AJJC, Habibovic P. In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models. Eur J Clin Microbiol Infect Dis 2018;37:187–208. doi: 10.1007/s10096-017-3089-2
Murray C, Adeyiga O, Owsley K, Di Carlo D. Research highlights: microfluidic analysis of antimicrobial susceptibility. Lab Chip 2015;15:1226–9. doi: 10.1039/c5lc90017d
Kavak DD, Altıok E, Bayraktar O, Ülkü S. Pistacia terebinthus extract: As a potential antioxidant, antimicrobial and possible β-glucuronidase inhibitor. J Mol Catal B Enzym 2010;64,167–71. doi: 10.1016/j.molcatb.2010.01.029
Kreander K, Riihimaki L, Vuorela P. Antimicrobial susceptibility studies with Varioskan [displayed 30 January 2020]. Available at https://www.ld.ru/w/implen/Varioskan_bacterial_growth_assay.pdf
D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 2007;43:348–61. PMID: 18209268
D’Archivio M, Filesi C, Varì R, Scazzocchio B. Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 2010;11:1321–42. doi: 10.3390/ijms11041321
Manach C, Williamson G, Morand C, Scalbert A. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005;81(Suppl 1):230S-42S. doi: 10.1093/ajcn/81.1.230S
Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005;81(Suppl 1):243S-55S. doi: 10.1093/ajcn/81.1.243S
Lee MH, Kwon HA, Kwon DY, Park H, Sohn DH, Kim YC, Eo SK, Kang HY, Kim SW, Lee JH. Antibacterial activity of medicinal herb extracts against Salmonella. Int J Food Microbiol 2006;111:270–5. doi: 10.1016/j. ijfoodmicro.2006.06.004
Choi JG, Kang OH, Lee YS, Chae HS, Oh YC, Brice OO, Kim MS, Sohn DH, Kim HS, Park H, Shin DW, Rho JR, Kwon DY. In vitro and in vivo antibacterial activity of Punica granatum peel ethanol extract against Salmonella. Evid Based Complement Alternat Med 2011;2011:690518. doi: 10.1093/ecam/nep105
Conte R, Calarco A, Napoletano A, Valentino A, Margarucci S, Di Cristo F, Di Salle A, Peluso G. Polyphenols nanoencapsulation for therapeutic applications. J Biomol Res Ther 2016;5:2. doi: 10.4172/2167-7956.1000139
Sakanaka S, Shimura N, Aizawa M, Kim M, Yamamoto T. Preventive effect of green tea polyphenols against dental caries in conventional rats. Biosci Biotechnol Biochem 1992;56:592–4. doi: 10.1271/bbb.56.592
Toda M, Okubo S, Ikigai H, Suzuki T, Suzuki Y, Hara Y, Shimamura T. The protective activity of tea catechins against experimental infection by Vibrio cholerae O1. Microbiol Immunol 1992;36:999–1001. doi: 10.1111/j.1348-0421.1992. tb02103.x
Vijaya K, Ananthan S. Therapeutic efficacy of medicinal plants against experimentally induced shigellosos in guinea pigs. Indian J Pharm Sci 1996;58:191–3.
Dastidar SG, Manna A, Kumar KA, Mazumdar K, Dutta NK, Chakrabarty AN, Motohashi N, Shirataki Y. Studies on the antibacterial potentiality of isoflavones. Int J Antimicrob Agents 2004;23:99–102. doi: 10.1016/j. ijantimicag.2003.06.003
Soni MG, Burdock GA, Christian MS, Bitler CM, Crea R. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem Toxicol 2006;44:903–15. doi: 10.1016/j.fct.2006.01.008
Akroum S, Bendjeddou D, Satta D, Lalaoui K. Antibacterial activity and acute toxicity effect of flavonoids extracted from Mentha longifolia. Am Euras J Sci Res 2009;2:93–6.
Ruiz MJ, Fernández M, Picó Y, Mañes J, Asensi M, Carda C, Asensio G, Estrela JM. Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. J Agric Food Chem 2009;57:3180–6. doi: 10.1021/jf803579e
Boncler M, Golanski J, Lukasiak M, Redzynia M, Dastych J, Watala C. A new approach for the assessment of the toxicity of polyphenol-rich compounds with the use of high content screening analysis. PLoS One 2017;12(6):e0180022. doi: 10.1371/journal.pone.0180022