Have a personal or library account? Click to login
Forgotten partners and function regulators of inducible metallothioneins Cover

Forgotten partners and function regulators of inducible metallothioneins

Open Access
|Dec 2019

References

  1. 1. Vallee BL. Metallothionein: historical review and perspectives. In: Kägi JHR, Nordberg M, editors. Metallothionein. Experientia Supplementum. Vol. 34. Basel: Birkhäuser; 1979. p. 19-39. doi: 10.1007/978-3-0348-6493-0_110.1007/978-3-0348-6493-0_1
  2. 2. Capdevila M, Bofill R, Palacios Ò, Atrian S. State-of-the-art of metallothioneins at the beginning of the 21st century. Coord Chem Rev 2012;256:46-62. doi: 10.1016/j.ccr.2011.07.00610.1016/j.ccr.2011.07.006
  3. 3. Hidalgo J, Chung R, Penkowa M, Vasak M. Structure and function of vertebrate metallothioneins. In: Sigel A, Sigel H, Sigel RKO, editors. Metallothioneins and related chelators: Metal ions in life sciences. Cambridge: RSC Publishing; 2009. p. 279-317. doi: 10.1039/9781847558992-0027910.1039/9781847558992-00279
  4. 4. Ziller A, Fraissinet-Tachet L. Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 2018;10:1549-59. doi: 10.1039/c8mt00165k10.1039/C8MT00165K
  5. 5. Jiang L-J, Maret W, Vallee BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A 1998;95:3483-8. doi: 10.1073/pnas.95.7.348310.1073/pnas.95.7.3483
  6. 6. Chen Y, Maret W. Catalytic selenols couple the redox cycles of metallothionein and glutathione. Eur J Biochem 2001;268:3346-53. doi: 10.1046/j.1432-1327.2001.02250.x10.1046/j.1432-1327.2001.02250.x
  7. 7. Jiang L-J, Maret W, Vallee BL. The ATP-metallothionein complex. Proc Natl Acad Sci U S A 1998;95:9146-9. doi: 10.1073/pnas.95.16.914610.1073/pnas.95.16.9146
  8. 8. Maret W, Heffron G, Hill HA, Djuricic D, Jiang L-J, Vallee BL. The ATP/metallothionein interaction: NMR and STM. Biochemistry 2002;41:1689-94. doi: 10.1021/bi01160831181436410.1021/bi0116083
  9. 9. Romero-Isart N, Vasák M. Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 2002;88:388-96. doi: 10.1016/S0162-0134(01)00347-610.1016/S0162-0134(01)00347-6
  10. 10. Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. BioMetals 2010;23:897-926. doi: 10.1007/s10534-010-9351-z10.1007/s10534-010-9351-z20549307
  11. 11. Wong DL, Merrifield-MacRae ME, Stillman MJ. Lead(II) binding in metallothioneins. In: Sigel A, Sigel H, Sigel R, editors. Lead - Its effects on environment and health. Berlin, Boston: De Gruyter; 2017. p. 241-70. doi: 10.1515/9783110434330-00910.1515/9783110434330-00928731302
  12. 12. Bell SG, Vallee BL. The metallothionein/thionein system: an oxidoreductive metabolic zinc link. Chembiochem 2009;10:55-62. doi: 10.1002/cbic.20080051110.1002/cbic.200800511
  13. 13. Cai L, Satoh M, Tohyama C, Cherian MG. Metallothionein in radiation exposure: its induction and protective role. Toxicology 1999;132:85-98. doi: 10.1016/s0300-483x(98)00150-410.1016/s0300-483x(98)00150-4
  14. 14. Mocchegiani E, Costarelli L, Basso A, Giacconi R, Piacenza F, Malavolta M. Metallothioneins, ageing and cellular senescence: a future therapeutic target. Curr Pharm Des 2013;19:1753-64. doi: 10.2174/138161281131909002210.2174/1381612811319090022
  15. 15. Malavolta M, Orlando F, Piacenza F, Giacconi R, Costarelli L, Basso A, Lucarini G, Pierpaoli E, Provinciali M. Metallothioneins, longevity and cancer: Comment on “Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain”. Exp Gerontol 2016;73:28-30. doi: 10.1016/j.exger.2015.11.01410.1016/j.exger.2015.11.01426615880
  16. 16. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017;25:11-24. doi: 10.1007/s10787-017-0309-410.1007/s10787-017-0309-4530617928083748
  17. 17. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017;168:344-61. https://doi.org/10.1016/j.cell.2016.12.03410.1016/j.cell.2016.12.034570645528129536
  18. 18. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012;5:9-19. doi: 10.1097/WOX.0b013e318243961310.1097/WOX.0b013e3182439613348892323268465
  19. 19. Maret W. The redox biology of redox-inert zinc ions. Free Radic Biol Med 2019;134:311-26. doi: 10.1016/j.freeradbiomed.2019.01.00610.1016/j.freeradbiomed.2019.01.00630625394
  20. 20. Maret W. The metals in the biological periodic system of the elements: concepts and conjectures. Int J Mol Sci 2016;17:pii: E66. doi: 10.3390/ijms1701006610.3390/ijms17010066473031126742035
  21. 21. Nishito Y, Kambe T. Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol (Tokyo) 2018;64:1-7. doi: 10.3177/jnsv.64.110.3177/jnsv.64.129491267
  22. 22. Zhang CC, Volkmann M, Tuma S, Stremmel W, Merle U. Metallothionein is elevated in liver and duodenum of Atp7b(−/−) mice. BioMetals 2018;31:617-25. doi: 10.1007/s10534-018-0110-x10.1007/s10534-018-0110-x29732486
  23. 23. Kimura T, Kambe T. The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 2016;17:336. doi: 10.3390/ijms1703033610.3390/ijms17030336481319826959009
  24. 24. Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 2017;67:283-301. doi: 10.1007/s12576-017-0521-410.1007/s12576-017-0521-428130681
  25. 25. Baltaci AK, Yuce K. Zinc transporter proteins. Neurochem Res 2018;43:517-30. doi: 10.1007/s11064-017-2454-y10.1007/s11064-017-2454-y29243032
  26. 26. Baltaci AK, Yuce K, Mogulkoc R. Zinc metabolism and metallothioneins. Biol Trace Elem Res 2018;183:22-31. doi: 10.1007/s12011-017-1119-710.1007/s12011-017-1119-728812260
  27. 27. Casey JR, Grinstein S, Orlowski J. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 2010;11:50-61. doi: 10.1038/nrm282010.1038/nrm282019997129
  28. 28. Stockwell BR, Friedmann A J, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A,Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171:273-85. doi: 10.1016/j.cell.2017.09.02110.1016/j.cell.2017.09.021568518028985560
  29. 29. Klaassen CD, Choudhuri S, McKim JM Jr, Lehman-McKeeman LD, Kershaw WC. In vitro and in vivo studies on the degradation of metallothionein. Environ Health Perspect 1994;102(Suppl 3):141-6. doi: 10.1289/ehp.94102s314110.1289/ehp.94102s314115674347843089
  30. 30. Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017;69:414-22. doi: 10.1002/iub.162110.1002/iub.162128349628
  31. 31. Baird SK, Kurz T, Brunk UT. Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 2006;394:275-83. doi: 10.1042/BJ2005114310.1042/BJ20051143138602616236025
  32. 32. Kurz T, Terman A, Brunk UT. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 2007;462:220-30. doi: 10.1016/j.abb.2007.01.01310.1016/j.abb.2007.01.013
  33. 33. Terman A, Kurz T. Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 2013;18:888-98. doi: 10.1089/ars.2012.488510.1089/ars.2012.4885
  34. 34. Kojima N, Young CR, Bates GW. Failure of metallothionein to bind iron or act as an iron mobilizing agent. Biochim Biophys Acta 1982;716:273-5. doi: 10.1016/0304-4165(82)90278-110.1016/0304-4165(82)90278-1
  35. 35. Good M, Vasak M. Iron(II)-substituted metallothionein: evidence for the existence of iron-thiolate clusters. Biochemistry 1986;25:8353-6. doi: 10.1021/bi00374a00310.1021/bi00374a00338282843828284
  36. 36. Ding X, Bill E, Good M, Trautwein A X, Vašák M. Mössbauer studies on the metal-thiolate cluster formation in Fe(II)-metallothionein. Eur J Biochem 1988;171:711-4. doi: 10.1111/j.1432-1033.1988.tb13843.x10.1111/j.1432-1033.1988.tb13843.x3345754
  37. 37. Werth MT, Johnson MK. Magnetic circular dichroism and electron paramagnetic resonance studies of iron(II)-metallothionein. Biochemistry 1989;28:3982-8. doi: 10.1021/bi00435a05310.1021/bi00435a0532546588
  38. 38. Fleet JC, Andrews GK, McCormick CC. Iron-induced metallothionein in chick liver: a rapid, route-dependent effect independent of zinc status. J Nutr 1990;120:1214-22. doi: 10.1093/jn/120.10.121410.1093/jn/120.10.12142213249
  39. 39. Kennedy MC, Gan T, Antholine WE, Petering DH. Metallothionein reacts with Fe2+ and NO to form products with a g=2.039 ESR signal. Biochem Biophys Res Commun 1993;196:632-5. doi: 10.1006/bbrc.1993.229610.1006/bbrc.1993.22968240338
  40. 40. Ding XQ, Bill E, Trautwein AX, Hartmann HJ, Weser U. Mössbauer studies on iron(II)-substituted yeast metallothionein. Eur J Biochem 1994;223:841-5. doi: 10.1111/j.1432-1033.1994.tb19060.x10.1111/j.1432-1033.1994.tb19060.x8055961
  41. 41. Sano Y, Onoda A, Sakurai R, Kitagishi H, Hayashi T. Preparation and reactivity of a tetranuclear Fe(II) core in the metallothionein α-domain. J Inorg Biochem 2011;105:702-8. doi: 10.1016/j.jinorgbio.2011.01.01110.1016/j.jinorgbio.2011.01.01121450274
  42. 42. Orihuela R, Fernández B, Palacios O, Valero E, Atrian S, Watt RK, Dominguez-Vera JM, Capdevila M. Ferritin and metallothionein: dangerous liaisons. Chem Commun 2011;47:12155-7. doi: 10.1039/c1cc14819b10.1039/c1cc14819b21991581
  43. 43. Carmona F, Mendoza D, Kord S, Asperti M, Arosio P, Atrian S, Capdevila M, Dominguez-Vera JM. Chemically and biologically harmless versus harmful ferritin/copper-metallothionein couples. Chemistry 2015;21:808-13. doi: 10.1002/chem.20140466010.1002/chem.20140466025370199
  44. 44. Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Bian J, Kumar AP, Sethi G, Perumal E. Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 2018;17:297-314. doi: 10.1016/j.redox.2018.05.00210.1016/j.redox.2018.05.002600781529775961
  45. 45. Song Y, Yang H, Lin R, Jiang K, Wang BM. The role of ferroptosis in digestive system cancer. Oncol Lett 2019; 18:2159-64. doi: 10.3892/ol.2019.1056810.3892/ol.2019.1056831402933667671031402933
  46. 46. Slater EP, Cato AC, Karin M, Baxter JD, Beato M. Progesterone induction of metallothionein-IIA gene expression. Mol Endocrinol 1988;2:485-91. doi: 10.1210/mend-2-6-48510.1210/mend-2-6-48528437582843758
  47. 47. Orct T, Jurasović J, Micek V, Karaica D, Sabolić I. Macro-and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo. J Trace Elem Med Biol 2017;40:104-11. doi: 10.1016/j.jtemb.2016.12.01510.1016/j.jtemb.2016.12.01528159217
  48. 48. Ljubojević M, Orct T, Micek V, Karaica D, Jurasović J, Breljak D, Vrhovac Madunić I, Rašić D, Novak Jovanović I, Peraica M, Gerić M, Gajski G, Kralik Oguić S, Rogić D, Nanić L, Rubelj I, Sabolić I. Sex-dependent expression of metallothioneins MT1 and MT2 and concentrations of trace elements in rat liver and kidney tissues: Effect of gonadectomy. J Trace Elem Med Biol 2019;53:98-108. doi: 10.1016/j.jtemb.2019.02.01010.1016/j.jtemb.2019.02.01030910215
  49. 49. Shimada H, Hashiguchi T, Yasutake A, Waalkes MP. Imamura Y. Sexual dimorphism of cadmium-induced toxicity in rats: involvement of sex hormones. Arch Toxicol 2012;86:1475-80. doi: 10.1007/s00204-012-0844-010.1007/s00204-012-0844-022466070
  50. 50. Hahn P, Song Y, Ying GS, He X, Beard J, Dunaief JL. Age-dependent and gender-specific changes in mouse tissue iron by strain. Exp Gerontol 2009;44:594-600. doi: 10.1016/j.exger.2009.06.0061956387710.1016/j.exger.2009.06.006455218819563877
  51. 51. Thévenod F, Wolff NA. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016;8:17-42. doi: 10.1039/c5mt00215j10.1039/C5MT00215J
  52. 52. Kong WN, Niu QM, Ge L, Zhang N, Yan SF, Chen WB, Chang YZ, Zhao SE. Sex differences in iron status and hepcidin expression in rats. Biol Trace Elem Res 2014;160:258-67. doi: 10.1007/s12011-014-0051-310.1007/s12011-014-0051-3
  53. 53. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 2017;8:126-36. doi: 10.3945/an.116.01396110.3945/an.116.013961
  54. 54. Liu Y, Liu J, Habeebu SM, Waalkes MP, Klaassen CD. Metallothionein-I/II null mice are sensitive to chronic oral cadmium-induced nephrotoxicity. Toxicol Sci 2000;57:167-76. doi: 10.1093/toxsci/57.1.16710.1093/toxsci/57.1.16710966523
  55. 55. Iszard RD, Liu Y, Dalton T, Andrews GK, Palmiter RD, Klaassen CD. Characterization of metallothionein-I-transgenic mice. Toxicol Appl Pharmacol 1995;133:305-12. doi: 10.1006/taap.1995.115510.1006/taap.1995.1155
  56. 56. Miura N, Koizumi S. Gene expression profiles in the liver and kidney of metallothionein-null mice. Biochem Biophys Res Commun 2005;332:949-55. doi: 10.1016/j.bbrc.2005.05.04310.1016/j.bbrc.2005.05.043
  57. 57. Kumar C, Igbaria A, D’Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 2011;30:2044-56. doi: 10.1038/emboj.2011.10510.1038/emboj.2011.105
  58. 58. Zalewska M, Trefon J, Milnerowicz H. The role of metallothionein interactions with other proteins. Proteomics 2014;14:1343-56. doi: 10.1002/pmic.2013004962461628610.1002/pmic.201300496
  59. 59. Oliván S, Calvo AC, Manzano R, Zaragoza P, Osta R. Sex differences in constitutive autophagy. BioMed Res Int 2014;2014:ID652817. doi: 10.1155/2014/65281710.1155/2014/652817
  60. 60. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 2014;509:105-9. doi: 10.1038/nature1314810.1038/13148
  61. 61. Fleming JT, Joshi JG. Ferritin: the role of aluminium in ferritin function. Neurobiol Aging 1991;12:413-8. doi: 10.1016/0197-4580(91)90066-S10.1016/0197-4580(91)90066-S
  62. 62. Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 2004;3:1-13. doi: 10.1128/EC.3.1.1-13.20041487193210.1128/EC.3.1.1-13.2004
  63. 63. Robertson A, Morrison JN, Wood AM, Bremner I. Effects of iron deficiency on metallothionein-I concentrations in blood and tissues of rats. J Nutr 1989;119:439-45. doi: 10.1093/jn/119.3.43910.1093/jn/119.3.439
  64. 64. Philpott CC, Ryu MS. Special delivery: distributing iron in the cytosol of mammalian cells. Front Pharmacol 2014;5:173. doi: 10.3389/fphar.2014.0017310.3389/fphar.2014.00173
  65. 65. Linder MC, Munro HN. Metabolic and chemical features of ferritins, a series of iron-inducible tissue proteins. Am J Pathol 1973;72:263-82. PMCID: PMC1903991
  66. 66. Atrian S, Capdevila M. Metallothionein-protein interactions. Biomol Concepts 2013;4:143-60. doi: 10.1515/bmc-2012-004910.1515/bmc-2012-004925436572
  67. 67. Zangger K, Öz G, Armitage IM. Re-evaluation of the binding of ATP to metallothionein. J Biol Chem 2000;275:7534-8. Erratum in: J Biol Chem 2001;276:30570. doi: 10.1074/jbc.275.11.753410.1074/jbc.275.11.7534
  68. 68. Zangger K, Armitage IM. Dynamics of interdomain and intermolecular interactions in mammalian metallothioneins. J Inorg Biochem 2002;88:135-43. doi: 10.1016/S0162-0134(01)00379-810.1016/S0162-0134(01)00379-8
  69. 69. Kuro-o M. A potential link between phosphate and aging-lessons from Klotho-deficient mice. Mech Ageing Dev 2010;131:270-5. doi: 10.1016/j.mad.2010.02.00810.1016/j.mad.2010.02.008
  70. 70. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML. Wilson’s disease. Lancet 2007;369:397-408. doi: 10.1016/S0140-6736(07)60196-210.1016/S0140-6736(07)60196-2
DOI: https://doi.org/10.2478/aiht-2019-70-3317 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 256 - 264
Submitted on: Jul 1, 2019
Accepted on: Nov 1, 2019
Published on: Dec 21, 2019
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Mirela Pavić, Petra Turčić, Marija Ljubojević, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.