Have a personal or library account? Click to login
The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals Cover

The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals

Open Access
|Jun 2019

References

  1. 1. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992;339:1523-6. doi: 10.1016/0140-6736(92)91277-F10.1016/0140-6736(92)91277-F
  2. 2. Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 2008;33:2416-26. doi: 10.1007/s11064-008-9697-610.1007/s11064-008-9697-6
  3. 3. Plaza M, Batista ÂG, Cazarin CBB, Sandahl M, Turner C, Östman E, Maróstica Júnior MR. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: a pilot clinical study. Food Chem 2016;211:185-97. doi: 10.1016/j.foodchem.2016.04.14210.1016/j.foodchem.2016.04.142
  4. 4. Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 2013;68:125-31. doi: 10.1016/j.phrs.2012.10.01810.1016/j.phrs.2012.10.018
  5. 5. Ravishankar D, Rajora AK, Greco F, Osborn HMI. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol 2013;45:2821-31. doi: 10.1016/j.biocel.2013.10.00410.1016/j.biocel.2013.10.004
  6. 6. Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 2011;41:1346-59. doi: 10.1111/j.1365-2222.2011.03773.x10.1111/j.1365-2222.2011.03773.x
  7. 7. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015;64:872-83. doi: 10.1136/gutjnl-2014-30714210.1136/gutjnl-2014-307142
  8. 8. Chen M-L, Yi L, Zhang Y, Zhou X, Ran L, Yang J, Zhu J-D, Zhang Q-Y, Mi M-T. Resveratrol attenuates trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 2016;7:e02210-15. doi: 10.1128/mBio.02210-1510.1128/mBio.02210-15
  9. 9. Yang B, Kotani A, Arai K, Kusu F. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Anal Sci 2001;17:599-604. doi: 10.2116/analsci.17.59910.2116/analsci.17.599
  10. 10. Hotta H, Nagano S, Ueda M, Tsujino Y, Koyama J, Osakai T. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim Biophys Acta 2002;1572:123-32. doi: 10.1016/S0304-4165(02)00285-410.1016/S0304-4165(02)00285-4
  11. 11. Komorsky-Lovrić Š, Novak Jovanović I. Abrasive stripping square wave voltammetry of some natural antioxidants. Int J Electrochem Sci 2016;11:836-42.10.1016/S1452-3981(23)15887-1
  12. 12. Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 1997;22:749-60. doi: 10.1016/S0891-5849(96)00351-610.1016/S0891-5849(96)00351-6
  13. 13. Chen ZY, Chan PT, Ho KY, Fung KP, Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids 1996;79:157-63. doi: 10.1016/0009-3084(96)02523-610.1016/0009-3084(96)02523-6
  14. 14. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol 1990;186:343-55. doi: 10.1016/0076-6879(90)86128-I10.1016/0076-6879(90)86128-I
  15. 15. Miličević A, Novak Jovanović I, Miletić GI. Changes in electronic structures of flavonoids upon electrochemical oxidation and a theoretical model for the estimation of the first oxidation potential. Electrochim Acta 2018;284:742-50. doi: 10.1016/j.electacta.2018.07.20210.1016/j.electacta.2018.07.202
  16. 16. Novak Jovanović I, Miličević A. A Model for the estimation of oxidation potentials of polyphenols. J Mol Liq 2017;241:255-9. doi: 10.1016/j.molliq.2017.06.01710.1016/j.molliq.2017.06.017
  17. 17. Novak Jovanović I, Miličević A. A new, simplified model for the estimation of polyphenol oxidation potentials based on the number of OH groups. Arh Hig Rada Toksikol 2017;68:93-8. doi: 10.1515/aiht-2017-68-298810.1515/aiht-2017-68-298828665801
  18. 18. Kongpichitchoke T, Hsu J-L, Huang T-C. Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies. J Agric Food Chem 2015;63:4580-6. doi: 10.1021/acs.jafc.5b0031210.1021/acs.jafc.5b0031225907027
  19. 19. van Acker SABE, de Groot MJ, van den Berg D-J, Tromp MNJL, den Kelder GD-O, van der Vijgh WJF, Bast A. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem Res Toxicol 1996;9:1305-12. doi: 10.1021/tx960096410.1021/tx96009648951233
  20. 20. Arteaga JF, Ruiz-Montoya M, Palma A, Alonso-Garrido G, Pintado S, Rodríguez-Mellado JM. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules 2012;17:5126-38. doi: 10.3390/molecules1705512610.3390/molecules17055126626803522555300
  21. 21. Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 2009;113:1226-33. doi: 10.1016/j.foodchem.2008.08.01310.1016/j.foodchem.2008.08.013
  22. 22. Zhang D, Chu L, Liu Y, Wang A, Ji B, Wu W, Zhou F, Wei Y, Cheng Q, Cai S, Xie L, Jia G. Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J Agric Food Chem 2011;59:10277-85. doi: 10.1021/jf201773q10.1021/jf201773q21827150
  23. 23. Stewart JJP. MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA (2016) [displayed 16 January 2019]. Available at HTTP://OpenMOPAC.net
  24. 24. Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090f10.1021/ci980090f
  25. 25. Foti MC. Use and abuse of the DPPH radical. J Agric Food Chem 2015;63:8765-76. doi: 10.1021/acs.jafc.5b0383910.1021/acs.jafc.5b0383926390267
  26. 26. Amić A, Marković Z, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D. Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms. Food Chem 2014;152:578-85. doi: 10.1016/j.foodchem.2013.12.02510.1016/j.foodchem.2013.12.02524444978
  27. 27. de Souza GLC, de Oliveira LMF, Vicari RG, Brown A. A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O-(1→3) linkage flavonols. J Mol Model 2016;22:100-8. doi: 10.1007/s00894-016-2961-910.1007/s00894-016-2961-927037824
DOI: https://doi.org/10.2478/aiht-2019-70-3290 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 134 - 139
Submitted on: May 1, 2019
Accepted on: May 1, 2019
Published on: Jun 26, 2019
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ante Miličević, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.