Have a personal or library account? Click to login
Sodium-glucose cotransporters: new targets of cancer therapy? Cover

Sodium-glucose cotransporters: new targets of cancer therapy?

Open Access
|Jan 2019

References

  1. 1. Vrhovac I, Breljak D, Sabolić I. Glucose transporters in the mammalian blood cells. Period Biol 2014;116:131-8.
  2. 2. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013;34:121-38. doi: 10.1016/j.mam.2012.07.00123506862
  3. 3. Wright E. Glucose transport families SLC5 and SLC50. Mol Aspects Med 2013;34:183-96. doi: 10.1016/j.mam.2012.11.00223506865
  4. 4. Wright E, Loo D, Hirayama B. Biology of human sodium glucose transporters. Physiol Rev 2011;91:733-94. doi: 10.1152/physrev.00055.200921527736
  5. 5. Hediger M, Rhoads D. Molecular physiology of sodiumglucose cotransporters. Physiol Rev 1994;74:993-1026. doi: 10.1152/physrev.1994.74.4.993
  6. 6. Wright EM, Ghezzi C, Loo DDF. Novel and unexpected functions of SGLTs. Physiology 2017;32:435-43. doi: 10.1152/physiol.00021.2017
  7. 7. Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol-Endoc M 2010;298:E141-5. doi: 10.1152/ajpendo.00712.2009
  8. 8. Wright EM, Loo DD, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Mackenzie B, Boorer K, Zampighi G. “Active” sugar transport in eukaryotes. J Exp Biol 1994;196:197-212. PMID: 782302210.1242/jeb.196.1.1977823022
  9. 9. Otto W. On the origin of cancer cells. Science 1956;123:309-14. doi: 10.1126/science.123.3191.309
  10. 10. Vander Heiden M, Cantley L, Thompson C. Understanding the Warburg effect: the metabolic requiremetns of cell proliferation. Science 2009;324:1029-33. doi: 10.1126/ science.1160809
  11. 11. Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget 2016;7:38908-26. doi: 10.18632/oncotarget.7676
  12. 12. Herrmann K, Benz MR, Krause BJ, Pomykala KL, Buck AK, Czernin J. (18)F-FDG-PET/CT in evaluating response to therapy in solid tumors: where we are and where we can go. Q J Nucl Med Mol Im 2011;55:620-32. PMID: 22231582
  13. 13. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Therapeut 2009;121:29-40. doi: 10.1016/j. pharmthera.2008.09.005
  14. 14. Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta 2013;1835:164-9. doi: 10.1016/j.bbcan.2012.12.004
  15. 15. Ouiddir A, Planès C, Fernandes I, VanHesse A, Clerici C. Hypoxia upregulates activity and expression of the glucose transporter GLUT1 in alveolar epithelial cells. Am J Resp Cell Mol 1999;21:710-8. doi: 10.1165/ajrcmb.21.6.3751
  16. 16. Zhang J-Z, Behrooz A, Ismail-Beigi F. Regulation of glucose transport by hypoxia. Am J Kidney Dis 1999;34:189-202. doi: 10.1016/S0272-6386(99)70131-9
  17. 17. Baumann MU, Zamudio S, Ilsley N. Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. Am J Physiol-Cell Ph 2007;293:C477-85. doi: 10.1152/ajpcell.00075.2007
  18. 18. Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, Klessen D, Friedrich A, Scherneck S, Rieg T, Cunard R, Veyhl-Wichmann M, Srinivasan A, Balen D, Breljak D, Rexhepaj R, Parker HE, Gribble FM, Reimann F, Lang F, Wiese S, Sabolić I, Sendtner M, Koepsell H. Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012;61:187-96. doi: 10.2337/db11-1029
  19. 19. Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflügers Arch 2004;447:510-8. doi: 10.1007/s00424-003-1063-6
  20. 20. Vallon V. Molecular determinants of renal glucose reabsorption. Focus on “Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2”. Am J Physiol-Cell Ph 2011;300:C6-8. doi: 10.1152/ ajpcell.00444.2010
  21. 21. Loo DDF, Wright EM, Zeuthen T. Water pumps. J Physiol 2002;542:53-60. doi: 10.1113/jphysiol.2002.018713
  22. 22. Sabolić I, Vrhovac I, Balen Eror D, Gerasimova M, Rose M, Breljak D, Ljubojević M, Brzica H, Sebastiani A, Thal SC, Sauvant C, Kipp H, Vallon V, Koepsell H. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidneyspecific and exhibits sex and species differences. Am J Physiol-Cell Ph 2012;302:C1174-88. doi: 10.1152/ajpcell.00450.2011
  23. 23. Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O, Radović N, Jadrijević S, Aleksić I, Walles T, Sauvant C, Sabolić I, Koepsell H. Localizations of Na+-Dglucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflügers Arch 2015;467:1881-98. doi: 10.1007/s00424-014-1619-7
  24. 24. Vrhovac Madunić I, Breljak D, Karaica D, Koepsell H, Sabolić I. Expression profiling and immunolocalization of Na+-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats. Pflügers Arch 2017;469:1545-65. doi: 10.1007/s00424-017-2056-1
  25. 25. Chen J, Williams S, Ho S, Loraine H, Hagan D, Whaley JM, Feder JN. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther 2010;1:57-92. doi: 10.1007/s13300-010-0006-4
  26. 26. Kashiwagi Y, Nagoshi T, Yoshino T, Tanaka TD, Ito K, Harada T, Takahashi H, Ikegami M, Anzawa R, Yoshimura M. Expression of SGLT1 in human hearts and impairment of cardiac glucose uptake by phlorizin during ischemiareperfusion injury in mice. PloS One 2015;10:e0130605. doi: 10.1371/journal.pone.0130605
  27. 27. Sharma P, Khairnar V, Vrhovac Madunić I, Singh Y, Pandyra A, Salker MS, Koepsell H, Sabolić I, Lang F, Lang PA, Lang KS. SGLT1 Deficiency turns Listeria infection into a lethal disease in mice. Cell Physiol Biochem 2017:1358-65. doi: 10.1159/000479197
  28. 28. Kepe V, Scafoglio C, Liu J, Yong WH, Bergsneider M, Huang SC, Barrio JR, Wright EM. Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas. J Neuro-Oncol 2018:138:557-69. doi: 10.1007/s11060-018-2823-7
  29. 29. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, Moatamed NA, Huang J, Koepsell H, Barrio JR, Wright EM. Functional expression of sodium-glucose transporters in cancer. P Natl Acad Sci USA 2015;112:E4111-9. doi: 10.1073/pnas.1511698112
  30. 30. Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res 2001;92:874-9. doi: 10.1111/j.1349-7006.2001.tb01175.x
  31. 31. Guo GF, Cai YC, Zhang B, Xu RH, Qiu HJ, Xia LP, Jiang WQ, Hu PL, Chen XX, Zhou FF, Wang F. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med Oncol 2011;28(Suppl 1):S197-203. doi: 10.1007/s12032-010-9696-8
  32. 32. Blais A. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose. Am J Physiol-Cell Ph 1991;260:C1245-52. doi: 10.1152/ajpcell.1991.260.6.C1245
  33. 33. Delezay O, Verrier B, Mabrouk K, van Rietschoten J, Fantini J, Mauchamp J, Gerard C. Characterization of an electrogenic sodium/glucose cotransporter in a human colon epithelial cell line. J Cell Physiol 1995;163:120-8. doi: 10.1002/jcp.1041630114
  34. 34. Bissonnette P, Gagne H, Coady MJ, Benabdallah K, Lapointe JY, Berteloot A. Kinetic separation and characterization of three sugar transport modes in Caco-2 cells. Am J Physiol 1996;270:G833-43. doi: 10.1152/ajpgi.1996.270.5.G833
  35. 35. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, Hung MC. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 2008;13:385-93. doi: 10.1016/j.ccr.2008.03.01518455122
  36. 36. Casneuf VF, Fonteyne P, Van Damme N, Demetter P, Pauwels P, de Hemptinne B, De Vos M, Van de Wiele C, Peeters M. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest 2008;26:852-9. doi: 10.1080/07357900801956363
  37. 37. Hanabata Y, Nakajima Y, Morita K, Kayamori K, Omura K. Coexpression of SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma. Odontology 2012;100:156-63. doi: 10.1007/s10266-011-0033-2
  38. 38. Helmke BM, Reisser C, Idzkoe M, Dyckhoff G, Herold- Mende C. Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck. Oral Oncol 2004;40:28-35. doi: 10.1016/S1368-8375(03)00129-5
  39. 39. Blessing A, Xu L, Gao G, Bollu LR, Ren J, Li H, Wu X, Su F, Huang W-C, Hung M-C, Huo L, Palapattu GS, Weihua Z. Sodium/glucose co-transporter 1 expression increases in human diseased prostate. J Cancer Sci Ther 2012;4:306-12. doi: 10.4172/1948-5956.1000159
  40. 40. Lin H-W, Tseng C-H. A Review on the relationship between SGLT2 inhibitors and cancer. Int J Endocrinol 2014;2014:719578. doi: 10.1155/2014/719578
  41. 41. Hummel CS, Lu C, Liu J, Ghezzi C, Hirayama BA, Loo DDF, Kepe V, Barrio JR, Wright EM. Structural selectivity of human SGLT inhibitors. Am J Physiol-Cell Ph 2012;302:C373-82. doi: 10.1152/ajpcell.00328.2011
  42. 42. Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 2015;66:255-70. doi: 10.1146/annurev-med-051013-110046
  43. 43. Balen D, Ljubojević M, Breljak D, Brzica H, Žlender V, Koepsell H, Sabolić I. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Physiol-Cell Ph 2008;295:C475-89. doi: 10.1152/ajpcell.00180.2008
  44. 44. World Health Organization (WHO). [displayed 22 November 2018]. Available at: http://www.who.int/en/news-room/factsheets/detail/cancer
  45. 45. RS B, Leung J, Kison P, Zasadny K, Flint A, Wahl R. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999;40:556-65. PMID: 1021021310210213
  46. 46. Kurata T, Oguri T, Isobe T. Differential expression of facilitative glucose transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn J Cancer Res 1999;90:1238-43. doi: 10.1111/j.1349-7006.1999.tb00702.x10622535
  47. 47. Yu M, Yongzhi H, Chen S, Luo X, Lin Y, Zhou Y, Jin H, Hou B, Deng Y, Tu L, Jian Z. The prognostic value of GLUT1 in cancers: a systematic review and meta-analysis. Oncotarget 2015;8:43356-67. doi: 10.18632/oncotarget.17445
  48. 48. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet 2016;388:73-85. doi: 10.1016/S0140-6736(16)00141-0
  49. 49. Ozaki T, Nakagawara A. Role of p53 in cell death and human cancers. Cancers 2011;3:994-1013. doi: 10.3390/cancers3010994
  50. 50. Ghezzi C, Wright EM. Regulation of the human Na+- dependent glucose cotransporter hSGLT2. Am J Physiol-Cell Ph 2012;303:C348-54. doi: 10.1152/ajpcell.00115.2012
  51. 51. Siegel RL, Miller KD, Jemal A. Cancer Statistics. CA Cancer J Clin 2017;67:7-30. doi: 10.3322/caac.21387
  52. 52. Vaz CV, Marques R, Alves MG, Oliveira PF, Cavaco JE, Maia CJ, Socorro S. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes. J Cancer Res Clin Oncol 2016;142:5-16. doi: 10.1007/s00432-015-1992-4
  53. 53. Lai B, Xiao Y, Pu H, Cao Q, Jing H, Liu X. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet 2012;285:1455-61. doi: 10.1007/s00404-011-2166-5
  54. 54. Salker MS, Singh Y, Zeng N, Chen H, Zhang S, Umbach AT, Fakhri H, Kohlhofer U, Quintanilla-Martinez L, Durairaj RRP, Barros FSV, Vrljicak P, Ott S, Brucker SY, Wallwiener D, Vrhovac Madunić I, Breljak D, Sabolić I, Koepsell H, Bronsen JJ, Lang F. Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy. Sci Rep 2017;7:12612. doi: 10.1038/s41598-017-11674-3
  55. 55. Yu AS, Hirayama BA, Timbol G, Liu J, Basarah E, Kepe V, Satyamurthy N, Huang S, Wright EM, Barrio JR. Functional expression of SGLTs in rat brain. Am J Physiol-Cell Ph 2010;1751:C1277-84. doi: 10.1152/ajpcell.00296.2010
  56. 56. Yu AS, Hirayama BA, Timbol G, Liu J, Diez-Sampedro A, Kepe V, Satyamurthy N, Huang S-C, Wright EM, Barrio JR. Regional distribution of SGLT activity in rat brain in vivo. Am J Physiol-Cell Ph 2013;304:C240-7. doi: 10.1152/ajpcell.00317.2012
  57. 57. Madunić J, Vrhovac Madunić I, Gajski G, Popić J, Garaj- Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett 2018;413:11-22. doi: 10.1016/j.canlet.2017.10.041
  58. 58. Koepsell H. The Na+ -D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther 2017;170:148-65. doi:10.1016/j.pharmthera.2016.10.017
  59. 59. Yamazaki Y, Harada S, Tokuyama S. Sodium-glucose transporter as a novel therapeutic target in disease. Eur J of Pharmacol 2018;822:25-31. doi: 10.1016/j.ejphar.2018.01.003.
DOI: https://doi.org/10.2478/aiht-2018-69-3204 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 278 - 285
Submitted on: Sep 1, 2018
Accepted on: Nov 1, 2018
Published on: Jan 11, 2019
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ivana Vrhovac Madunić, Josip Madunić, Davorka Breljak, Dean Karaica, Ivan Sabolić, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.