Have a personal or library account? Click to login
Redox imbalance caused by pesticides: a review of OPENTOX-related research Cover

Redox imbalance caused by pesticides: a review of OPENTOX-related research

Open Access
|Jul 2018

References

  1. 1. Food and Agriculture Organization of the United Nations (FAO). The International Code of Conduct on Pesticide Management. Rome: FAO/WHO; 2014.
  2. 2. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit 2004;10:RA141-7. PMID: 15173684
  3. 3. Lee BW, Oh SH, Chung JH, Moon CK, Lee BH. N-Nitroso metabolite of carbofuran induces apoptosis in CHL cells by cytochrome c-mediated activation of caspases. Toxicology 2004;201:51-8. doi: 10.1016/j.tox.2004.03.02210.1016/j.tox.2004.03.022
  4. 4. Jabłońska-Trypuć A. Pesticides as inducers of oxidative stress. ROS 2017;3:96-110. doi: 10.20455/ros.2017.82310.20455/ros.2017.823
  5. 5. Raszewski G, Lemieszek MK, Łukawski K, Juszczak M, Rzeski W. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin Pharmacol Toxicol 2015;116:158-67. doi: 10.1111/bcpt.1228510.1111/bcpt.12285
  6. 6. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-12. doi: 10.1126/science.281.5381.130910.1126/science.281.5381.1309
  7. 7. Organic Pollutants in Environment-Markers and Biomarkers of Toxicity (OPENTOX). [displayed 16 May 2018]. Available at http://opentox.imi.hr/.
  8. 8. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010;48:749-62. doi: 10.1016/j.freeradbiomed.2009.12.02210.1016/j.freeradbiomed.2009.12.022
  9. 9. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4th ed. New York (NY): Oxford University Press Inc; 2007.
  10. 10. Wang X, Anadón A, Qinghua W, Qiao F, Ares I, Martínez-Larrañaga MR, Yuan Z, Martínez MA. Mechanism of neonicotinoid toxicity: impact on oxidative stress and metabolism. Annu Rev Pharmacol Toxicol 2018;58:471-507. doi: 10.1146/annurev-pharmtox-010617-05242910.1146/annurev-pharmtox-010617-052429
  11. 11. Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK. Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 2002;64:1037-48. PMID: 1221360310.1016/S0006-2952(02)01174-7
  12. 12. Bonneh-Barkay D, Langston WJ, Di Monte DA. Toxicity of redox cycling pesticides in primary mesencephalic cultures. Antioxid Redox Sign 2005;7:649-53. doi: 10.1089/ars.2005.7.64910.1089/ars.2005.7.649
  13. 13. Kitazawa M, Anantharam V, Kanthasamy AG. Dieldrin-induced oxidative stress and neurocheminal changes contribute to apoptotic cell death in dopaminergic cells. Free Radic Biol Med 2001;31:1473-85. PMID: 1172882010.1016/S0891-5849(01)00726-2
  14. 14. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 2006;5:14. doi: 10.1186/1477-3163-5-1410.1186/1477-3163-5-14147980616689993
  15. 15. Dikshith TSS, Diwan PV. Organophosphorus pesticides. In: Industrial Guide to Chemical and Drug Safety. New Jersey, NJ: John Wiley & Sons, Inc; 2003. p. 123-56.10.1002/0471426075.ch5
  16. 16. Ware GW, Whitacre DM. The Pesticide Book. 6th ed. Willoughby (OH): MeisterPro Information Resources; 2004.
  17. 17. Garcia SJ, Seidler FJ, Crumpton TL, Slotkin TA. Does the developmental neurotoxicity of chlorpyrifos involve glial targets? Macromolecule synthesis, adenylyl cyclase signaling, nuclear transcription factors, and formation of reactive oxygen in C6 glioma cells. Brain Res 2001;891:54-68. doi: 10.1016/S0006-8993(00)03189-910.1016/S0006-8993(00)03189-9
  18. 18. Crumpton TL, Seidler FJ, Slotkin TA. Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res 2000;857:87-98. doi: 10.1016/S0006-8993(99)02357-410.1016/S0006-8993(99)02357-4
  19. 19. Song X, Seidler FJ, Saleh JL, Zhang J, Padilla S, Slotkin TA. Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenyl cyclase signaling cascade. Toxicol Appl Pharm 1997;145:158-74. doi: 10.1006/taap.1997.817110.1006/taap.1997.8171
  20. 20. Schuh RA, Lein PJ, Beckles RA, Jett DA. Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons. Toxicol Appl Pharm 2002;182:176-85. doi: 10.1006/taap.2002.944510.1006/taap.2002.9445
  21. 21. Ki YW, Park JH, Lee JE, Shin IC, Koh HC. JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol Lett 2013;218:235-45. doi: 10.1016/j.toxlet.2013.02.00310.1016/j.toxlet.2013.02.003
  22. 22. Slotkin TA, Seidler FJ. Prenatal chlorpyrifos exposure elicits presynaptic serotonergic and dopaminergic hyperactivity at adolescence: critical periods for regional and sex-selective effects. Reprod Toxicol 2007;23:421-7. doi: 10.1016/j.reprotox.2006.07.01010.1016/j.reprotox.2006.07.010
  23. 23. Qiao D, Seidler FJ, Slotkin TA. Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC-12 and C-6 glioma cells. Environ Health Perspect 2001;109:909-13. doi: 10.1289/ehp.0110990910.1289/ehp.01109909
  24. 24. Yang D, Howard A, Bruun D, Ajua-Alemanj M, Pickart C, Lein PJ. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase. Toxicol Appl Pharma 2008;228:32-41. doi: 10.1016/j.taap.2007.11.00510.1016/j.taap.2007.11.005
  25. 25. Crumpton TL, Seidler FJ, Slotkin TA. Is oxidative stress involved in the developmental neurotoxicity of chlorpyrifos? Dev Brain Res 2000;121:189-95. doi: 10.1016/S0165-3806(00)00045-610.1016/S0165-3806(00)00045-6
  26. 26. Lee JE, Park JH, Shin IC, Koh HC. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos. Toxicol Appl Pharma 2012;263:148-62. doi: 10.1016/j.taap.2012.06.00510.1016/j.taap.2012.06.00522714038
  27. 27. Carlson K, Jortner BS, Ehrich M. Organophosphorus compound-induced apoptosis in SH-SY5Y human neuroblastoma cells. Toxicol Appl Pharm 2000;168:102-13. doi: 10.1006/taap.2000.899710.1006/taap.2000.899711032765
  28. 28. Park JH, Lee JE, Shin IC, Koh HC. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicol Appl Pharm 2013;268:55-67. doi: 10.1016/j.taap.2013.01.01310.1016/j.taap.2013.01.01323352508
  29. 29. Sakamuru S, Attene-Ramos MS, Xia M. Mitochondrial membrane potential assay. Methods Mol Biol 2016;1473:17-22. doi: 10.1007/978-1-4939-6346-1_210.1007/978-1-4939-6346-1_2537516527518619
  30. 30. Zhou C, Li X. Cytotoxicity of chlorpyrifos to human liver hepatocellular carcinoma cells: effects on mitochondrial membrane potential and intracellular free Ca2+. Toxin Reviews 2017. doi: 10.1080/15569543.2017.138668610.1080/15569543.2017.1386686
  31. 31. Gultekin F, Ozturk M, Akdogan M. The effect of organophosphate insecticide chlorpyrifos-ethyl on lipid peroxidation and antioxidant enzymes (in vitro). Arch Toxicol 2000;74:533-8. doi: 10.1007/s00204000016710.1007/s00204000016711131033
  32. 32. Durak D, Uzun FG, Kalender S, Ogutcu A, Uzunhisarcikli M, Kalender Y. Malathion-induced oxidative stress in human erythrocytes and the protective effect of vitamins C and E in vitro. Environ Toxicol 2009;24:235-42. doi: 10.1002/tox.2042310.1002/tox.2042318655177
  33. 33. Al-Sarar AS, Abobakr Y, Bayoumi AE, Hussein HI. Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells. Environ Sci Pollut R 2015;22:17041-52. doi: 10.1007/s11356-015-4927-310.1007/s11356-015-4927-326122579
  34. 34. Bal R, Türk G, Tuzcu M, Yilmaz O, Kuloglu T, Gundogdu R, Gür S, Agca A, Ulas M, Cambay Z, Tuzcu Z, Gencoglu H, Guvenc M, Ozsahin AD, Kocaman N, Aslan A, Etem E. Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. J Environ Sci Health B 2012;47:434-44. doi: 10.1080/03601234.2012.66331110.1080/03601234.2012.66331122424069
  35. 35. Lonare M, Kumar M, Raut S, Badgujar P, Doltade S, Telang A. Evaluation of imidacloprid-induced neurotoxicity in male rats: a protective effect of curcumin. Neurochem Int 2014;78:122-9. doi: 10.1016/j.neuint.2014.09.00410.1016/j.neuint.2014.09.00425261201
  36. 36. Kapoor U, Srivastava MK, Bhardwaj S, Srivastava LP. Effect of imidacloprid on antioxidant enzymes and lipid peroxidation in female rats to derive its No Observed Effect Level (NOEL). J Toxicol Sci 2010;35:577-81. doi: 10.2131/jts.35.57710.2131/jts.35.577
  37. 37. Yardimci M, Sevgiler Y, Rencuzogullari E, Arslan M, Buyukleyla M, Yilmaz M. Sex-, tissue-, and exposure duration-dependent effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part I: oxidative and neurotoxic potentials. Arh Hig Rada Toksikol 2014;65:387-98. doi: 10.2478/10004-1254-65-2014-255410.2478/10004-1254-65-2014-2554
  38. 38. Tomizawa M, Casida JE. Desnitro-imidacloprid activates the extracellular signal-regulated kinase cascade via the nicotinic receptor and intracellular calcium mobilization in N1E-115 cells. Toxicol Appl Pharm 2002;184:180-6. doi: 10.1006/taap.2002.950310.1006/taap.2002.9503
  39. 39. Želježić D, Mladinić M, Žunec S, Lucić Vrdoljak A, Kašuba V, Tariba B, Živković T, Marjanović AM, Pavičić I, Milić M, Rozgaj R, Kopjar N. Cytotoxic, genotoxic and biochemical markers of insecticide toxicity evaluated in human peripheral blood lymphocytes and an HepG2 cell line. Food Chem Toxicol 2016;96:90-106. doi: 10.1016/j.fct.2016.07.036.10.1016/j.fct.2016.07.036
  40. 40. Annabi A, Dhouib IB, Lamine AJ, El Golli N, Gharbi N, El Fazâa S, Lasram MM. Recovery by N-acetylcysteine from subchronic exposure to Imidacloprid-induced hypothalamic-pituitary-adrenal (HPA) axis tissues injury in male rats. Toxicol Mech Methods 2015;25:524-31. doi: 10.3109/15376516.2015.104566310.3109/15376516.2015.1045663
  41. 41. Soujanya S, Lakshman M, Kumar AA, Reddy AG. Evaluation of the protective role of vitamin C in imidacloprid-induced hepatotoxicity in male Albino rats. J Nat Sci Biol Med 2013;4:63-7. doi: 10.4103/0976-9668.10726210.4103/0976-9668.107262
  42. 42. Zhang JJ, Wang Y, Xiang HY, Li MX, Li WH, Ma KG, Wang XZ, Zhang JH. Oxidative stress: role in acetamiprid-induced impairment of the male mice reproductive system. Agr Sci China 2011;10:786-96. doi: 10.1016/S1671-2927(11)60063-110.1016/S1671-2927(11)60063-1
  43. 43. Yan S, Wang J, Zhu L, Chen A, Wang J. Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers. Ecotoxicol Environ Saf 2015;122:54-60. doi: 10.1016/j.ecoenv.2015.06.03010.1016/j.ecoenv.2015.06.03026202306
  44. 44. Kaneko H. Pyrethroid chemistry and metabolism. In: Krieger R, editor. Hayes’ Handbook of Pesticide Toxicology. 3rd ed. New York (NY): Academic Press; 2010. p. 1635-63.10.1016/B978-0-12-374367-1.00076-8
  45. 45. Saillenfait AM, Ndiaye D, Sabaté JP. Pyrethroids: exposure and health effects-an update. Int J Hyg Envir Heal 2015;218:281-92. doi: 10.1016/j.ijheh.2015.01.00210.1016/j.ijheh.2015.01.00225648288
  46. 46. Soderlund DM, Bloomquist JR. Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 1989;34:77-96. doi: 10.1146/annurev.en.34.010189.00045310.1146/annurev.en.34.010189.000453
  47. 47. Soderlund DM. Toxicology and mode of action of pyrethroid insecticides. In: Krieger R, editor. Hayes’ Handbook of Pesticide Toxicology. 3rd ed. New York (NY): Academic Press; 2010. p. 1665-86.10.1016/B978-0-12-374367-1.00077-X
  48. 48. World Health Organization (WHO). Cyhalothrin. Environmental Health Criteria, 99. Geneva: WHO; 1990.
  49. 49. Kale M, Rathore N, John S, Bhatnagar D. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett 1999;105:197-205. doi: 10.1016/S0378-4274(98)00399-310.1016/S0378-4274(98)00399-3
  50. 50. Clemens MR, Waller HD. Lipid peroxidation in erythrocytes. Chem Phys Lipids 1987;45:251-68. doi: 10.1016/0009-3084(87)90068-510.1016/0009-3084(87)90068-5
  51. 51. Prasanthi K, Muralidhara Rajini PS. Morphological and biochemical perturbations in rat erythrocytes following in vitro exposure to Fenvalerate and its metabolite. Toxicol In Vitro 2005;19:449-56. doi: 10.1016/j.tiv.2004.12.00310.1016/j.tiv.2004.12.00315892188
  52. 52. Sadowska-Woda I, Popowicz D, Karowicz-Bilińska A. Bifenthrin-induced oxidative stress in human erythrocytes in vitro and protective effect of selected flavonols. Toxicol in Vitro 2010;24:460-4. doi: 10.1016/j.tiv.2009.09.02410.1016/j.tiv.2009.09.02419833193
  53. 53. El-Demerdash FM. Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicol in Vitro 2007;21:392-7. doi: 10.1016/j.tiv.2006.09.01910.1016/j.tiv.2006.09.01917137748
  54. 54. Singh AK, Tiwari MN, Prakash O, Singh MP. A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neuro-degeneration. Curr Neuropharmacol 2012;10:64-71. doi: 10.2174/15701591279936277910.2174/157015912799362779328684822942879
  55. 55. Igbedioh SO. Effects of agricultural pesticides on humans, animals, and higher plants in developing countries. Arch Environ Health 1991;46:218-24. doi: 10.1080/00039896.1991.993745210.1080/00039896.1991.99374522069430
  56. 56. Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MK, Prabhakar YS, Bandyopadhyay S. Cypermethrin induces astrocyte apoptosis by the disruption of the autocrine/paracrine mode of epidermal growth factor receptor signaling. Toxicol Sci 2012;125:473-87. doi: 10.1093/toxsci/kfr30310.1093/toxsci/kfr30322048644
  57. 57. Wang XZ, Liu SS, Sun Y, Wu JY, Zhou YL, Zhang JH. Beta-cypermethrin impairs reproductive function in male mice by inducing oxidative stress. Theriogenology 2009;72:599-611. doi: 10.1016/j.theriogenology.2009.04.01610.1016/j.theriogenology.2009.04.01619500828
  58. 58. Stevens JT, Breckenridge CB, Simpkins J, Eldridge JC. Symmetrical and asymmetrical triazine herbicides. In: Krieger R, editor. Handbook of Pesticide Toxicology. Vol 2. San Diego (CA): Academic Press; 2001. p. 1511-9.10.1016/B978-012426260-7.50069-0
  59. 59. Klementova S, Keltnerova L. Triazine herbicides in the environment. In: Price A, Kelton J, Sarunaite L, editors. Herbicides, Physiology of Action, and Safety. InTech, 2015. doi: 10.5772/6085810.5772/60858
  60. 60. 2004/248/EC: Commission Decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance [displayed 9 May 2018], Available at http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004D0248
  61. 61. Song XY, Li JN, Wu YP, Zhang B, Li BX. Atrazine causes autophagy- and apoptosis-related neurodegenerative effects in dopaminergic neurons in the rat nigrostriatal dopaminergic system. Int J Mol Sci 2015;16:13490-506. doi: 10.3390/ijms16061349010.3390/ijms160613490449050526075868
  62. 62. Song Y, Zhu LS, Wang J, Wang JH, Liu W, Xie H. DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine. Soil Biol Biochem 2009;41:905-9. doi: 10.1016/j.soilbio.2008.09.00910.1016/j.soilbio.2008.09.009
  63. 63. Singh M, Sandhir R, Kiran R. Effects on antioxidant status of liver following atrazine exposure and its attenuation by vitamin E. Exp Toxicol Pathol 2011;63:269-76. doi: 10.1016/j.etp.2010.01.00510.1016/j.etp.2010.01.00520138743
  64. 64. Zhang Y, Meng D, Wang Z, Guo H, Wang Y. Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiol Lett 2012;334:95-101. doi: 10.1111/j.1574-6968.2012.02625.x10.1111/j.1574-6968.2012.02625.x22724442
  65. 65. Jin YX, Zhang XX, Shu LJ, Chen LF, Sun LW, Qian HF, Liu WP, Fu ZW. Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 2010;78:846-52. doi: 10.1016/j.chemosphere.2009.11.04410.1016/j.chemosphere.2009.11.04420036412
  66. 66. Abarikwu SO, Farombi EO, Kashyap MP, Pant AB. Kolaviron protects apoptotic cell death in PC12 cells exposed to Atrazine. Free Radical Res 2011;45:1061-73. doi: 10.3109/10715762.2011.59317710.3109/10715762.2011.59317721726175
  67. 67. Želježić D, Žunec S, Bjeliš M, Benković V, Mladinić M, Lovaković Tariba B, Pavičić I, Marjanović Čermak AM, Kašuba V, Milić M, Pizent A, Lucić Vrdoljak A, Kopjar N. Effects of the chloro-s-triazine herbicide terbuthylazine on DNA integrity in human and mouse cells. Environ Sci Pollut Res 2018 [Epub ahead of print]. doi: 10.1007/s11356-018-2046-7.10.1007/s11356-018-2046-729721798
  68. 68. European Commission. Review report for the active substance terbuthylazine finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 17 June 2011 in view of the approval of terbuthylazine as active substances in accordance with Regulation (EC) No 1107/2009. [displayed 17 May 2018]. Available at http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.ViewReview&id=467.
  69. 69. Koutnik D, Stara A, Zuskova E, Kouba A, Velisek J. The effect of subchronic metribuzin exposure to signal crayfish (Pacifastacus leniusculus Dana 1852). Neuro Endocrinol Lett 2014;35(Suppl 2):51-6. PMID: 25638366
  70. 70. Husak VV, Mosiichuk NM, Maksymiv IV, Sluchyk IY, Storey JM, Storey KB, Lushchak VI. Histopathological and biochemical changes in goldfish kidney due to exposure to the herbicide Sencor may be related to induction of oxidative stress. Aquat Toxicol 2014;155:181-9. doi: 10.1016/j.aquatox.2014.06.02010.1016/j.aquatox.2014.06.02025036620
  71. 71. Hostovsky M, Blahova J, Plhalova L, Stepanova S, Praskova E, Marsalek P, Svobodova Z. Oxidative stress parameters in early developmental stages of common carp (Cyprinus carpio L.) after subchronic exposure to terbuthylazine and metribuzin. Neuro Endocrinol Lett 2012;33(Suppl 3):124-9. PMID: 23353855
  72. 72. Herrmann KM, Weaver LM. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 1999;50:473–503. doi: 10.1146/annurev.arplant.50.1.47310.1146/annurev.arplant.50.1.47315012217
  73. 73. de María N, Becerril JM, Garca-Plazaola JI, Hernandez AH, de Felipe MR, Fernández-Pascual M. New insights on glyphosate mode of action in nodular metabolism: role of shikimate accumulation. J Agr Food Chem 1996;54:2621-8. doi: 10.1021/jf058166c10.1021/jf058166c16569053
  74. 74. International Agency for Research on Cancer (IARC). Some Organophosphate Insecticides and Herbicides. IARC Monographs Vol. 112. Lyon: IARC; 2015.
  75. 75. Kašuba V, Milić M, Rozgaj R, Kopjar N, Mladinić M, Žunec S, Lucić Vrdoljak A, Pavičić I, Marjanović Čermak AM, Pizent A, Tariba Lovaković B, Želježić D. Effects of low doses of glyphosate on DNA damage, cell proliferation and oxidative stress in the HepG2 cell line. Environ Sci Pollut Res 2017;24(23):19267-81. doi: 10.1007/s11356-017-9438-y10.1007/s11356-017-9438-y28667585
  76. 76. Elie-Caille C, Heu C, Guyon C, Nicod L. Morphological damages of a glyphosate-treated human keratinocyte cell line revealed by a micro- to nanoscale microscopic investigation. Cell Biol Toxicol 2010;26:331-9. doi: 10.1007/s10565-009-9146-610.1007/s10565-009-9146-620043237
  77. 77. Gui YX, Fan XN, Wang HM, Wang G, Chen SD. Glyphosate induced cell death through apoptotic and autophagic mechanisms. Neurotoxicol Teratol 2012;34:344-9. doi: 10.1016/j.ntt.2012.03.00510.1016/j.ntt.2012.03.00522504123
  78. 78. Martini CN, Gabrielli M, Vila MC. A commercial formulation of glyphosate inhibits proliferation and differentiation to adipocytes and induces apoptosis in 3T3-L1 fibroblasts. Toxicol In Vitro 2012;26:1007-13. doi: 10.1016/j.tiv.2012.04.01710.1016/j.tiv.2012.04.01722546541
  79. 79. Kim YH, Hong JR, Gil HW, Song HY, Hong SY. Mixtures of glyphosate and surfactant TN20 accelerate cell death via mitochondrial damage-induced apoptosis and necrosis. Toxicol In Vitro 2013;27:191-7. doi: 10.1016/j.tiv.2012.09.02110.1016/j.tiv.2012.09.02123099315
  80. 80. Li MH. Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 2008;70:1796-803. doi: 10.1016/j.chemosphere.2007.08.03210.1016/j.chemosphere.2007.08.03217905407
  81. 81. Song HY, Kim YH, Seok SJ, Gil HW, Hong SY. In vitro cytotoxic effect of glyphosate mixture containing surfactants. J Korean Med Sci 2012;27:711-5. doi: 10.3346/jkms.2012.27.7.71110.3346/jkms.2012.27.7.711339071622787363
  82. 82. Song HY, Kim YH, Seok SJ, Gil HW, Yang JO, Lee EY, Hong SY. Cellular toxicity of surfactants used as herbicide additives. J Korean Med Sci 2012;27:3-9. doi: 10.3346/jkms.2012.27.1.310.3346/jkms.2012.27.1.3
  83. 83. Coalova I, Ríos de Molina Mdel C, Chaufan G. Influence of the spray adjuvant on the toxicity effects of a glyphosate formulation. Toxicol In Vitro 2014;28:1306-11. doi: 10.1016/j.tiv.2014.06.01410.1016/j.tiv.2014.06.014
  84. 84. Gehin A, Guillaume YC, Millet J, Guyon C, Nicod L. Vitamins C and E reverse effect of herbicide-induced toxicity on human epidermal cells HaCaT: a biochemometric approach. Int J Pharmaceut 2005;288:219-26. doi: 10.1016/j.ijpharm.2004.09.02410.1016/j.ijpharm.2004.09.024
  85. 85. Norris SR, Shen X. DellaPenna D. Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 1998;117:1317-23. PMCID: PMC3489510.1104/pp.117.4.1317
  86. 86. Lee DL, Knudsen CG, Michaely WJ, Chin H-L, Nguyen NH, Carter CG, Cromartie TH, Lake BH, Shribbs JM, Fraser T. The structure-activity relationships of the triketone class of HPPD herbicides. Pestic Sci 1998;54:377-84. doi: 10.1002/(SICI)1096-9063(199812)54:4<;377::AID-PS827>3.0.CO;2-010.1002/(SICI)1096-9063(199812)54:4<;377::AID-PS827>3.0.CO;2-0
  87. 87. United States Environmental Protection Agency (US EPA). Human-Health Risk Assessment for Proposed Uses on Field Corn, Sweet Corn and Popcorn [displayed 18 May 2018]. Available at https://www.fluoridealert.org/wp-content/pesticides/EPA-HQ-OPP-2006-0072-0005
  88. 88. Ndikuryayo F, Moosavi B, Yang WC, Yang GF. 4-Hydroxyphenylpyruvate dioxygenase inhibitors: from chemical biology to agrochemicals. J Agr Food Chem 2017;65:8523-37. doi: 10.1021/acs.jafc.7b0385110.1021/acs.jafc.7b03851
  89. 89. Ahrens H, Lange G, Müller T, Rosinger C, Willms L van Almsick A. 4-hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture. Angew Chem Int Edit 2013;52:9388-98. doi: 10.1002/anie.20130236510.1002/anie.201302365
  90. 90. Sta C, Goujon E, Ferjani E, Ledoigt G. Toxicity of sulcotrione and grape marc on Vicia faba cells. J Agr Food Chem 2014;62:11777-85. doi: 10.1021/jf503323t10.1021/jf503323t
  91. 91. Olchanheski LR, Dourado MN, Beltrame FL, Zielinski AA, Demiate IM, Pileggi SA, Azevedo RA, Sadowsky MJ, Pileggi M. Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α. PLoS One 2014;9(6):e99960. doi: 10.1371/journal.pone.009996010.1371/journal.pone.0099960
  92. 92. Prione LP, Olchanheski LR, Tullio LD, Santo BCE, Reche PM, Martins PF, Carvalho G, Demiate IM, Pileggi SAV, Dourado MN, Prestes RA, Sadowsky MJ, Azevedo RA, Pileggi M. GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis. AMB Express 2016;6:70. doi: 10.1186/s13568-016-0240-x10.1186/s13568-016-0240-x
  93. 93. Žunec S, Kašuba V, Pavičić I, Marjanović AM, Tariba B, Milić M, Kopjar N, Pizent A, Vrdoljak AL, Rozgaj R, Želježić D. Assessment of oxidative stress responses and the cytotoxic and genotoxic potential of the herbicide tembotrione in HepG2 cells. Food Chem Toxicol 2016;94:64-74. doi: 10.1016/j.fct.2016.05.01910.1016/j.fct.2016.05.01927255802
DOI: https://doi.org/10.2478/aiht-2018-69-3105 | Journal eISSN: 1848-6312 | Journal ISSN: 0004-1254
Language: English, Croatian, Slovenian
Page range: 126 - 134
Submitted on: Feb 1, 2018
Accepted on: May 1, 2018
Published on: Jul 7, 2018
Published by: Institute for Medical Research and Occupational Health
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Ana Marija Marjanović Čermak, Ivan Pavičić, Davor Želježić, published by Institute for Medical Research and Occupational Health
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.