Bachmann, J., Horton, R., van der Ploeg, R. R., & Woche, S. (2000). Modified sessile drop method for assessing initial soil-water contact angle of sandy soil. Soil Science Society of America Journal, 64(2), 564–567. https://doi.org/10.2136/sssaj2000.642564x
DeBano, L. F. (2000). The role of fire and soil heating on water repellency in wildland environments: A review. Journal of Hydrology, 231–232, 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
DeBano, L. F., Savage, S. M., & Hamilton, D. A. (1976). The transfer of heat and hydrophobic substances during burning. Soil Science Society of America Journal, 40(5), 779–782. https://doi.org/10.2136/sssaj1976.03615995004000050043x
Doerr, S. H., Shakesby, R. A., & Walsh, R. P. D. (2000). Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51(1–4), 33–65. https://doi.org/10.1016/S0012-8252(00)00011-8
Forgeard, F., & Frenot, Y. (1996). Effects of burning on heathland soil chemical properties: An experimental study on the effect of heating and ash deposits. Journal of Applied Ecology, 33(4), 803–811. https://doi.org/10.2307/2404950
Hosking, J. S. (1938). The ignition at low temperatures of the organic matter in soils. The Journal of Agricultural Science, 28(3), 393–400. https://doi.org/10.1017/S0021859600050851
International Organization for Standardization. (1995a). ISO 10693: Soil quality – Determination of carbonate content – Volumetric method. Geneva, Switzerland.
International Organization for Standardization (1995b). ISO 10694: Soil quality – Determination of organic and total carbon after dry combustion (elementary analysis). Geneva, Switzerland.
International Organization for Standardization (2009). ISO 11277: Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation. Geneva, Switzerland.
Kinney, T. J., Masiello, C. A., Dugan, B., Hockaday, W. C., Dean, M. R., Zygourakis, K., & Barnes, R. T. (2012). Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34–43. https://doi.org/10.1016/j.biombioe.2012.01.033
Novák, V., Lichner, L., Zhang, B., & Kňava, K. (2009). The impact of heating on the hydraulic properties of soils sampled under different plant cover. Biologia, 64(3), 483–486. https://doi.org/10.2478/s11756-009-0099-2
Papierowska, E., Matysiak, W., Szatyłowicz, J., Debaene, G., Urbanek, E., Kalisz, B., & Łachacz, A. (2018). Compatibility of methods used for soil water repellency determination for organic and organomineral soils. Geoderma, 314, 221–231. https://doi.org/10.1016/j.geoderma.2017.11.012
Šurda, P., Lichner, L., Iovino, M., Hološ, S., & Zvala, A. (2023). The effect of heating on properties of sandy soils. Land, 12(9), 1752. https://doi.org/10.3390/land12091752
Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015). Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 134, 257–262. https://doi.org/10.1016/j.chemosphere.2015.04.062