References
- Ahmed, A., Gariepy, Y., & Raghavan, V. (2017). Influence of wood-derived biochar on the compatibility and strength of silt loam soil. International Agrophysics, 31(2). https://doi.org/10.1515/intag-2016-0044
- Altdorff, D., Galagedara, L., Abedin, J., & Unc, A. (2019). Effect of biochar application rates on the hydraulic properties of an agricultural-use boreal podzol. Soil Syst, 3, 53. https://doi.org/10.3390/soilsystems3030053
- Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society of America Journal, 84, 687. DOI: 10.2136/sssaj2017.01.0017.
- Castellini, M., Giglio, L., Niedda, M., Palumbo, A. D., & Ventrella, D. (2015). Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil and Tillage Research, 154. https://doi.org/10.1016/j.still.2015.06.016
- Chen, D., Wang, X., Carrión, V. J., Yin, S., Yue, Z., Liao, Y., Dong, Y., & Li, X. (2022). Acidic amelioration of soil amendments improves soil health by impacting rhizosphere microbial assemblies. Soil Biology and Biochemistry, 167. https://doi.org/10.1016/j.soilbio.2022.108599
- Chen, J., Liu, X., Li, L., Zheng, J., Qu, J., Zheng, J., Zhang, X., & Pan, G. (2015). Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China. Applied Soil Ecology, 91. https://doi.org/10.1016/j.apsoil.2015.02.012
- Doran, J. W., & Parkin, T. B. (2015). Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality.
- Elangovan, R., & Sekaran, N. C. (2014). Effect of biochar application on soil properties and quality parameters in cotton. Asian Journal of Soil Science, 9(1).
- FAO. (2015). World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy.
- Genesio, L., Miglietta, F., Lugato, E., Baronti, S., Pieri, M., & Vaccari, F. P. (2012). Surface albedo following biochar application in durum wheat. Environmental Research Letters, 7(1). https://doi.org/10.1088/1748-9326/7/1/014025
- Gliniak, M., Sikora, J., Sadowska, U., Klimek-Kopyra, A., Latawiec, A., & Kubon, M. (2019). Impact of Biochar on Soil Temperature. IOP Conference Series: Earth and Environmental Science, 362(1). https://doi.org/10.1088/1755-1315/362/1/012045
- Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376(1–2). https://doi.org/10.1007/s11104-013-1980-x
- He, X., Du, Z., Wang, Y., Lu, N., & Zhang, Q. (2016). Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands. Applied Soil Ecology, 108. https://doi.org/10.1016/j.apsoil.2016.08.018
- Horák, J., Kondrlová, E., Igaz, D., Šimanský, V., Felber, R., Lukac, M., Balashov, E. v., Buchkina, N. P., Rizhiya, E. Y., & Jankowski, M. (2017). Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia (Poland), 72(9). https://doi.org/10.1515/biolog-2017-0109
- Horák, J., Šimanský, V., & Igaz, D. (2019). Biochar and biochar with N fertilizer impact on soil physical properties in a silty loam Haplic Luvisol. Journal of Ecological Engineering, 20(7). https://doi.org/10.12911/22998993/109857
- IPCC. (2018). Global Warming of 1.5 °C. Intergovernmental Panel on Climate Change. Retrieved June 07, 2024. http://www.ipcc.ch/sr15/
- Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2). https://doi.org/10.1016/j.agee.2010.12.005
- Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental science & technology, 44(4), 1247–1253.
- Kerr, Y. H. (2007). Soil moisture from space: Where are we? Hydrogeology Journal, 15(1). https://doi.org/10.1007/s10040-006-0095-3
- Kondrlova, E., Horak, J., Igaz, D. (2018). Effect of biochar and nutrient amendment on vegetative growth of spring barley (Hordeum vulgare L. var. Malz). Australian Journal of Crop Science, 12(2). https://doi.org/10.21475/ajcs.18.12.02.pne476
- Li, Y. Q., Li, L. J., Zhao, B. W., Zhao, Y., Zhang, X., & Dong, X. (2023). Effects of Corn Straw Biochar, Soil Bulk Density and Soil Water Content on Thermal Properties of a Light Sierozem Soil. Nature Environment and Pollution Technology, 22(2). https://doi.org/10.46488/NEPT.2023.v22i02.032
- Liu, Z., Xu, J., Li, X., & Wang, J. (2018). Mechanisms of biochar effects on thermal properties of red soil in south China. Geoderma, 323. https://doi.org/10.1016/j.geoderma.2018.02.045
- Lu, N., Liu, X. R., Du, Z. L., Wang, Y. D., & Zhang, Q. Z. (2014). Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Research, 52(5). https://doi.org/10.1071/SR13239
- Ma, R., Wu, X., Liu, Z., Yi, Q., Xu, M., Zheng, J., Bian, R., Zhang, X., & Pan, G. (2023). Biochar improves soil organic carbon stability by shaping the microbial community structures at different soil depths four years after an incorporation in a farmland soil. Current Research in Environmental Sustainability, 5. https://doi.org/10.1016/j.crsust.2023.100214
- Manea, A., Tabassum, S., Lambert, M., Cinantya, A., Ossola, A., & Leishman, M. R. (2023). Biochar, but not soil microbial additives, increase the resilience of urban plant species to low water availability. Urban Ecosystems, 26(5). https://doi.org/10.1007/s11252-023-01382-4
- Matheus, R., Kantur, D., & Salli, M. K. (2023). Utilization of organic soil amendments and phosphorus fertilizer to improve chemical properties of degraded dry land Vertisol and maize yield. Journal of Degraded and Mining Lands Management, 10(2). https://doi.org/10.15243/jdmlm.2023.102.4297
- Peake, L. R., Reid, B. J., & Tang, X. (2014). Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma, 235–236. https://doi.org/10.1016/j.geoderma.2014.07.002
- Qin, T., Feng, J., Zhang, X., Li, C., Fan, J., Zhang, C., Dong, B., Wang, H., & Yan, D. (2023). Continued decline of global soil moisture content, with obvious soil stratification and regional difference. Science of the Total Environment, 864. https://doi.org/10.1016/j.scitotenv.2022.160982
- Rasa, K., Heikkinen, J., Hannula, M., Arstila, K., Kulju, S., & Hyväluoma, J. (2018). How and why does willow biochar increase a clay soil water retention capacity? Biomass and Bioenergy, 119. https://doi.org/10.1016/j.biombioe.2018.10.004
- Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361. https://doi.org/10.1016/j.geoderma.2019.114055
- Sanz, C., Casadoi, M., Tadic, Đ., Pastor-López, E. J., Navarro-Martin, L., Parera, J., Tugues, J., Ortiz, C. A., Bayona, J. M., & Piña, B. (2022). Impact of organic soil amendments in antibiotic levels, antibiotic resistance gene loads, and microbiome composition in corn fields and crops. Environmental Research, 214. https://doi.org/10.1016/j.envres.2022.113760
- Schlesinger, W. H. (Ed.). (2005). Biogeochemistry. Treatise on Geochemistry, Elsevier.
- Šiška, B., Špánik, F., Repa, Š., & Gálik, M. (2005). Practical Biometeorology (Praktická Biometeorológia). SUA. (In Slovak)
- Su, J., Zeng, Q., Li, S., Wang, R., & Hu, Y. (2024). Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. Journal of Environmental Management, 355. https://doi.org/10.1016/j.jenvman.2024.120553
- Taheri, M. al R., Astaraei, A. R., Lakzian, A., & Emami, H. (2024). The role of biochar and sulfur-modified biochar on soil water content, biochemical properties and millet crop under saline-sodic and calcareous soil. Plant and Soil, 499(1–2). https://doi.org/10.1007/s11104-023-05912-z
- Toková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam haplic luvisol. Agronomy, 10(7). https://doi.org/10.3390/agronomy10071005
- Usowicz, B., Lipiec, J., Łukowski, M., Marczewski, W., & Usowicz, J. (2016). The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil and Tillage Research, 164. https://doi.org/10.1016/j.still.2016.03.009
- Vitkova, J., Kondrlova, E., Rodny, M., Surda, P., & Horak, J. (2017). Analysis of soil water content and crop yield after biochar application in field conditions. Plant, Soil and Environment, 63(12). https://doi.org/10.17221/564/2017-PSE
- Vitková, J., Šurda, P., Rončák, P., Botková, N., & Zvala, A. (2021). Statistical analysis of soil water content differences after biochar application and its repeated application during 2020 growing season. Acta Hydrologica Slovaca, 22(2). https://doi.org/10.31577/ahs-2021-0022.02.0036
- Wallace, J. S. (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems and Environment, 82(1–3), 105–119. https://doi.org/10.1016/S0167-8809(00)00220-6
- Wang, G., Zhang, X., Yinglan, A., Duan, L., Xue, B., & Liu, T. (2021). A spatio-temporal cross comparison framework for the accuracies of remotely sensed soil moisture products in a climate-sensitive grassland region. Journal of Hydrology, 597. https://doi.org/10.1016/j.jhydrol.2021.126089
- Wang, X., Li, Y., Wang, H., Wang, Y., Biswas, A., Wai Chau, H., Liang, J., Zhang, F., Bai, Y., Wu, S., Chen, J., Liu, H., Yang, G., & Pulatov, A. (2022). Targeted biochar application alters physical, chemical, hydrological and thermal properties of salt-affected soils under cotton-sugarbeet intercropping. Catena, 216. https://doi.org/10.1016/j.catena.2022.106414
- Wei, B., Peng, Y., Lin, L., Zhang, D., Ma, L., Jiang, L., Li, Y., He, T., & Wang, Z. (2023). Drivers of biochar-mediated improvement of soil water retention capacity based on soil texture: A meta-analysis. Geoderma, 437. https://doi.org/10.1016/j.geoderma.2023.116591
- Zhang, H., Cheng, Y., Zhong, Y., Ni, J., Wei, R., & Chen, W. (2024). Roles of biochars’ properties in their water-holding capacity and bound water evaporation: quantitative importance and controlling mechanism. Biochar, 6(1). https://doi.org/10.1007/s42773-024-00317-2
- Zhang, Q., Wang, Y., Wu, Y., Wang, X., Du, Z., Liu, X., & Song, J. (2013). Effects of Biochar Amendment on Soil Thermal Conductivity, Reflectance, and Temperature. Soil Science Society of America Journal, 77(5). https://doi.org/10.2136/sssaj2012.0180
- Zhang, Z., Pan, Z., Pan, F., Zhang, J., Han, G., Huang, N., Wang, J., Pan, Y., Wang, Z., & Peng, R. (2020). The change characteristics and interactions of soil moisture and temperature in the farmland in Wuchuan County, Inner Mongolia, China. Atmosphere, 11(5). https://doi.org/10.3390/ATMOS11050503
- Zheng, H., Ma, W., & Li, G. (2021). Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China. Australian Journal of Agricultural and Resource Economics, 65(2). https://doi.org/10.1111/1467-8489.12406