Ahmed, A., Gariepy, Y., & Raghavan, V. (2017). Influence of wood-derived biochar on the compatibility and strength of silt loam soil. International Agrophysics, 31(2). https://doi.org/10.1515/intag-2016-0044
Altdorff, D., Galagedara, L., Abedin, J., & Unc, A. (2019). Effect of biochar application rates on the hydraulic properties of an agricultural-use boreal podzol. Soil Syst, 3, 53. https://doi.org/10.3390/soilsystems3030053
Castellini, M., Giglio, L., Niedda, M., Palumbo, A. D., & Ventrella, D. (2015). Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil and Tillage Research, 154. https://doi.org/10.1016/j.still.2015.06.016
Chen, J., Liu, X., Li, L., Zheng, J., Qu, J., Zheng, J., Zhang, X., & Pan, G. (2015). Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China. Applied Soil Ecology, 91. https://doi.org/10.1016/j.apsoil.2015.02.012
Elangovan, R., & Sekaran, N. C. (2014). Effect of biochar application on soil properties and quality parameters in cotton. Asian Journal of Soil Science, 9(1).
FAO. (2015). World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy.
Genesio, L., Miglietta, F., Lugato, E., Baronti, S., Pieri, M., & Vaccari, F. P. (2012). Surface albedo following biochar application in durum wheat. Environmental Research Letters, 7(1). https://doi.org/10.1088/1748-9326/7/1/014025
Gliniak, M., Sikora, J., Sadowska, U., Klimek-Kopyra, A., Latawiec, A., & Kubon, M. (2019). Impact of Biochar on Soil Temperature. IOP Conference Series: Earth and Environmental Science, 362(1). https://doi.org/10.1088/1755-1315/362/1/012045
Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376(1–2). https://doi.org/10.1007/s11104-013-1980-x
He, X., Du, Z., Wang, Y., Lu, N., & Zhang, Q. (2016). Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands. Applied Soil Ecology, 108. https://doi.org/10.1016/j.apsoil.2016.08.018
Horák, J., Kondrlová, E., Igaz, D., Šimanský, V., Felber, R., Lukac, M., Balashov, E. v., Buchkina, N. P., Rizhiya, E. Y., & Jankowski, M. (2017). Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia (Poland), 72(9). https://doi.org/10.1515/biolog-2017-0109
Horák, J., Šimanský, V., & Igaz, D. (2019). Biochar and biochar with N fertilizer impact on soil physical properties in a silty loam Haplic Luvisol. Journal of Ecological Engineering, 20(7). https://doi.org/10.12911/22998993/109857
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2). https://doi.org/10.1016/j.agee.2010.12.005
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental science & technology, 44(4), 1247–1253.
Kondrlova, E., Horak, J., Igaz, D. (2018). Effect of biochar and nutrient amendment on vegetative growth of spring barley (Hordeum vulgare L. var. Malz). Australian Journal of Crop Science, 12(2). https://doi.org/10.21475/ajcs.18.12.02.pne476
Li, Y. Q., Li, L. J., Zhao, B. W., Zhao, Y., Zhang, X., & Dong, X. (2023). Effects of Corn Straw Biochar, Soil Bulk Density and Soil Water Content on Thermal Properties of a Light Sierozem Soil. Nature Environment and Pollution Technology, 22(2). https://doi.org/10.46488/NEPT.2023.v22i02.032
Liu, Z., Xu, J., Li, X., & Wang, J. (2018). Mechanisms of biochar effects on thermal properties of red soil in south China. Geoderma, 323. https://doi.org/10.1016/j.geoderma.2018.02.045
Lu, N., Liu, X. R., Du, Z. L., Wang, Y. D., & Zhang, Q. Z. (2014). Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Research, 52(5). https://doi.org/10.1071/SR13239
Ma, R., Wu, X., Liu, Z., Yi, Q., Xu, M., Zheng, J., Bian, R., Zhang, X., & Pan, G. (2023). Biochar improves soil organic carbon stability by shaping the microbial community structures at different soil depths four years after an incorporation in a farmland soil. Current Research in Environmental Sustainability, 5. https://doi.org/10.1016/j.crsust.2023.100214
Manea, A., Tabassum, S., Lambert, M., Cinantya, A., Ossola, A., & Leishman, M. R. (2023). Biochar, but not soil microbial additives, increase the resilience of urban plant species to low water availability. Urban Ecosystems, 26(5). https://doi.org/10.1007/s11252-023-01382-4
Matheus, R., Kantur, D., & Salli, M. K. (2023). Utilization of organic soil amendments and phosphorus fertilizer to improve chemical properties of degraded dry land Vertisol and maize yield. Journal of Degraded and Mining Lands Management, 10(2). https://doi.org/10.15243/jdmlm.2023.102.4297
Peake, L. R., Reid, B. J., & Tang, X. (2014). Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma, 235–236. https://doi.org/10.1016/j.geoderma.2014.07.002
Qin, T., Feng, J., Zhang, X., Li, C., Fan, J., Zhang, C., Dong, B., Wang, H., & Yan, D. (2023). Continued decline of global soil moisture content, with obvious soil stratification and regional difference. Science of the Total Environment, 864. https://doi.org/10.1016/j.scitotenv.2022.160982
Rasa, K., Heikkinen, J., Hannula, M., Arstila, K., Kulju, S., & Hyväluoma, J. (2018). How and why does willow biochar increase a clay soil water retention capacity? Biomass and Bioenergy, 119. https://doi.org/10.1016/j.biombioe.2018.10.004
Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361. https://doi.org/10.1016/j.geoderma.2019.114055
Sanz, C., Casadoi, M., Tadic, Đ., Pastor-López, E. J., Navarro-Martin, L., Parera, J., Tugues, J., Ortiz, C. A., Bayona, J. M., & Piña, B. (2022). Impact of organic soil amendments in antibiotic levels, antibiotic resistance gene loads, and microbiome composition in corn fields and crops. Environmental Research, 214. https://doi.org/10.1016/j.envres.2022.113760
Su, J., Zeng, Q., Li, S., Wang, R., & Hu, Y. (2024). Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. Journal of Environmental Management, 355. https://doi.org/10.1016/j.jenvman.2024.120553
Taheri, M. al R., Astaraei, A. R., Lakzian, A., & Emami, H. (2024). The role of biochar and sulfur-modified biochar on soil water content, biochemical properties and millet crop under saline-sodic and calcareous soil. Plant and Soil, 499(1–2). https://doi.org/10.1007/s11104-023-05912-z
Toková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam haplic luvisol. Agronomy, 10(7). https://doi.org/10.3390/agronomy10071005
Usowicz, B., Lipiec, J., Łukowski, M., Marczewski, W., & Usowicz, J. (2016). The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil and Tillage Research, 164. https://doi.org/10.1016/j.still.2016.03.009
Vitkova, J., Kondrlova, E., Rodny, M., Surda, P., & Horak, J. (2017). Analysis of soil water content and crop yield after biochar application in field conditions. Plant, Soil and Environment, 63(12). https://doi.org/10.17221/564/2017-PSE
Vitková, J., Šurda, P., Rončák, P., Botková, N., & Zvala, A. (2021). Statistical analysis of soil water content differences after biochar application and its repeated application during 2020 growing season. Acta Hydrologica Slovaca, 22(2). https://doi.org/10.31577/ahs-2021-0022.02.0036
Wallace, J. S. (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems and Environment, 82(1–3), 105–119. https://doi.org/10.1016/S0167-8809(00)00220-6
Wang, G., Zhang, X., Yinglan, A., Duan, L., Xue, B., & Liu, T. (2021). A spatio-temporal cross comparison framework for the accuracies of remotely sensed soil moisture products in a climate-sensitive grassland region. Journal of Hydrology, 597. https://doi.org/10.1016/j.jhydrol.2021.126089
Wei, B., Peng, Y., Lin, L., Zhang, D., Ma, L., Jiang, L., Li, Y., He, T., & Wang, Z. (2023). Drivers of biochar-mediated improvement of soil water retention capacity based on soil texture: A meta-analysis. Geoderma, 437. https://doi.org/10.1016/j.geoderma.2023.116591
Zhang, H., Cheng, Y., Zhong, Y., Ni, J., Wei, R., & Chen, W. (2024). Roles of biochars’ properties in their water-holding capacity and bound water evaporation: quantitative importance and controlling mechanism. Biochar, 6(1). https://doi.org/10.1007/s42773-024-00317-2
Zhang, Q., Wang, Y., Wu, Y., Wang, X., Du, Z., Liu, X., & Song, J. (2013). Effects of Biochar Amendment on Soil Thermal Conductivity, Reflectance, and Temperature. Soil Science Society of America Journal, 77(5). https://doi.org/10.2136/sssaj2012.0180
Zhang, Z., Pan, Z., Pan, F., Zhang, J., Han, G., Huang, N., Wang, J., Pan, Y., Wang, Z., & Peng, R. (2020). The change characteristics and interactions of soil moisture and temperature in the farmland in Wuchuan County, Inner Mongolia, China. Atmosphere, 11(5). https://doi.org/10.3390/ATMOS11050503
Zheng, H., Ma, W., & Li, G. (2021). Adoption of organic soil amendments and its impact on farm performance: evidence from wheat farmers in China. Australian Journal of Agricultural and Resource Economics, 65(2). https://doi.org/10.1111/1467-8489.12406