Have a personal or library account? Click to login
Biochar with N-Fertilizer Effects on Soil CO2 Emissions and Soil Physical Properties Cover

Biochar with N-Fertilizer Effects on Soil CO2 Emissions and Soil Physical Properties

Open Access
|Nov 2025

References

  1. Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences, 7(6), 1915–1926. https://doi.org/10.5194/bg-7-1915-2010
  2. Bovsun, M. A., Castaldi, S., Nesterova, O. V., Semal, Viktoriia. A., Sakara, N. A., Brikmans, A. V., Khokhlova, A. I., & Karpenko, T. Y. (2021). Effect of biochar on soil CO2 fluxes from agricultural field experiments in russian far east. Agronomy, 11(8), 1559. https://doi.org/10.3390/agronomy11081559
  3. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809), 184–187. https://doi.org/10.1038/35041539
  4. Crutzen, P. J. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, 77(3–4), 211. https://doi.org/10.1007/s10584-006-9101-y
  5. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173. https://doi.org/10.1038/nature04514
  6. Edenhofer, O. (Ed.). (2015). Climate change 2014: mitigation of climate change. Cambridge University Press.
  7. Elder, J. W., & Lal, R. (2008). Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil and Tillage Research, 98(1), 45–55. https://doi.org/10.1016/j.still.2007.10.003
  8. European Commission. (2010). Joint Research Centre. Institute for Environment and Sustainability. Biochar application to soils: A critical scientific review of effects on soil properties, processes and functions. Publications Office. https://data.europa.eu/doi/10.2788/472
  9. Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433(7021), 57–59. https://doi.org/10.1038/nature03138
  10. FAO. (2020). The Contribution of Agriculture to Greenhouse Gas Emissions. http://www.fao.org/economic/ess/environment/data/emission-shares/en/
  11. FAO. (2016). Greenhouse Gas Emissions from Agriculture, Forestry and Other Land Use. http://www.fao.org/3/a-i6340e.pdf
  12. Feng, W., Yang, F., Cen, R., Liu, J., Qu, Z., Miao, Q., & Chen, H. (2021). Effects of straw biochar application on soil temperature, available nitrogen and growth of corn. Journal of Environmental Management, 277, 111331. https://doi.org/10.1016/j.jenvman.2020.111331
  13. Fierer, N., Colman, B. P., Schimel, J. P., & Jackson, R. B. (2006). Predicting the temperature dependence of microbial respiration in soil: A continental-scale analysis. Global Biogeochemical Cycles, 20(3), 2005GB002644. https://doi.org/10.1029/2005GB002644
  14. Gokmenoglu, K. K., & Taspinar, N. (2018). Testing the agriculture-induced EKC hypothesis: The case of Pakistan. Environmental Science and Pollution Research, 25(23), 22829–22841. https://doi.org/10.1007/s11356-018-2330-6
  15. He, X., Du, Z., Wang, Y., Lu, N., & Zhang, Q. (2016). Sensitivity of soil respiration to soil temperature decreased under deep biochar amended soils in temperate croplands. Applied Soil Ecology, 108, 204–210. https://doi.org/10.1016/j.apsoil.2016.08.018
  16. He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini Bai, S., Wallace, H., & Xu, C. (2017). Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy, 9(4), 743–755. https://doi.org/10.1111/gcbb.12376
  17. Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176), 289–292. https://doi.org/10.1038/nature06591
  18. Huang, C., Chen, Y., Jin, L., & Yang, B. (2024). Properties of biochars derived from different straw at 500 °C pyrolytic temperature: Implications for their use to improving acidic soil water retention. Agricultural Water Management, 301, 108953. https://doi.org/10.1016/j.agwat.2024.108953
  19. IPPC (Intergovernmental panel on climate change) (Ed.). (2014). Climate change 2013: The physical science basis. Cambridge university press.
  20. Ippolito, J. A., Laird, D. A., & Busscher, W. J. (2012). Environmental benefits of biochar. Journal of Environmental Quality, 41(4), 967–972. https://doi.org/10.2134/jeq2012.0151
  21. Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017. https://doi.org/10.1016/j.fuel.2021.121017
  22. Jin, J., Li, Y., Zhang, J., Wu, S., Cao, Y., Liang, P., Zhang, J., Wong, M. H., Wang, M., Shan, S., & Christie, P. (2016). Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 320, 417–426. https://doi.org/10.1016/j.jhazmat.2016.08.050
  23. Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433(7023), 298–301. https://doi.org/10.1038/nature03226
  24. Kotuš, T., Šimanský, V., Drgoňová, K., Illéš, M., Wójcik-Gront, E., Balashov, E., Buchkina, N., Aydın, E., & Horák, J. (2022). Combination of biochar with n-fertilizer affects properties of soil and n2o emissions in maize crop. Agronomy, 12(6), 1314. https://doi.org/10.3390/agronomy12061314
  25. Krull, E. S., Skjemstad, J. O., & Baldock, J. A. (2004). Functions of Soil Organic Matter and the Effect on Soil Properties: GRDC Project No CSO 00029, Residue Management, Soil Organic Carbon and Crop Performance. CSIRO Land & Water.
  26. Li, L., Awada, T., Shi, Y., Jin, V. L., & Kaiser, M. (2025). Global greenhouse gas emissions from agriculture: Pathways to sustainable reductions. Global Change Biology, 31(1), e70015. https://doi.org/10.1111/gcb.70015
  27. Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of The Total Environment, 487, 26–36. https://doi.org/10.1016/j.scitotenv.2014.03.141
  28. Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le Quéré, C., Marland, G., Raupach, M. R., & Wilson, C. (2013). The challenge to keep global warming below 2 °C. Nature Climate Change, 3(1), 4–6. https://doi.org/10.1038/nclimate1783
  29. Petersen, H., & Luxton, M. (1982). A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos, 39(3), 288. https://doi.org/10.2307/3544689
  30. Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298(5870), 156–159. https://doi.org/10.1038/298156a0
  31. Raich, J. W., & Tufekciogul, A. (2000). Vegetation and soil respiration: Correlations and controls. Biogeochemistry, 48(1), 71–90. https://doi.org/10.1023/A:1006112000616
  32. Razzaghi, F., Obour, P. B., & Arthur, E. (2020). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055. https://doi.org/10.1016/j.geoderma.2019.114055
  33. Ridzuan, N. H. A. M., Marwan, N. F., Khalid, N., Ali, M. H., & Tseng, M.-L. (2020). Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resources, Conservation and Recycling, 160, 104879. https://doi.org/10.1016/j.resconrec.2020.104879
  34. Romaní, A. M., Fischer, H., Mille-Lindblom, C., & Tranvik, L. J. (2006). Interactions of bacteria and fungi on decomposing litter: Differential extracellular enzyme activities. Ecology, 87(10), 2559–2569. https://doi.org/10.1890/0012-9658(2006)87[2559:IOBAFO]2.0.CO;2
  35. Rothenberg, G. (2023). A realistic look at CO2 emissions, climate change and the role of sustainable chemistry. Sustainable Chemistry for Climate Action, 2, 100012. https://doi.org/10.1016/j.scca.2023.100012
  36. Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81–91. https://doi.org/10.4155/cmt.13.77
  37. Shackley, S., Ruysschaert, G., Zwart, K., & Glaser, B. (Ed.). (2016). Biochar in European soils and agriculture: Science and practice. Routledge.
  38. Shafawi, A. N., Mohamed, A. R., Lahijani, P., & Mohammadi, M. (2021). Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches. Journal of Environmental Chemical Engineering, 9(6), 106869. https://doi.org/10.1016/j.jece.2021.106869
  39. Tang, J., Baldocchi, D. D., Goldstein, A., & Xu, L. (2003). Pulse effects of soil respiration after rain events in California. https://ui.adsabs.harvard.edu/abs/2003AGUFM.B52D..05T
  40. Tang, S., Cheng, W., Hu, R., Guigue, J., Kimani, S. M., Tawaraya, K., & Xu, X. (2016). Simulating the effects of soil temperature and moisture in the off-rice season on rice straw decomposition and subsequent CH4 production during the growth season in a paddy soil. Biology and Fertility of Soils, 52(5), 739–748. https://doi.org/10.1007/s00374-016-1114-8
  41. Tisserant, A., & Cherubini, F. (2019). Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land, 8(12), 179. https://doi.org/10.3390/land8120179
  42. Vargas, R., Detto, M., Baldocchi, D. D., & Allen, M. F. (2010). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, 16(5), 1589–1605. https://doi.org/10.1111/j.1365-2486.2009.02111.x
  43. Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
  44. Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054
  45. Werner, C., & Brantley, S. (2003). CO2 emissions from the Yellowstone volcanic system. Geochemistry, Geophysics, Geosystems, 4(7), 2002GC000473. https://doi.org/10.1029/2002GC000473
  46. Xiong, J., Yu, R., Islam, E., Zhu, F., Zha, J., & Sohail, M. I. (2020). Effect of biochar on soil temperature under high soil surface temperature in coal mined arid and semiarid regions. Sustainability, 12(19), 8238. https://doi.org/10.3390/su12198238
  47. Xu, L., Madsen, R., Anderson, D., Furtaw, M., Garcia, R., & McDermitt, D. (2004). The impact of wind on the soil respiration measurement. American Geophysical Union, Fall Meeting, B51A-0935. https://ui.adsabs.harvard.edu/abs/2004AGUFM.B51A0935X
  48. Xu, M., & Shang, H. (2016). Contribution of soil respiration to the global carbon equation. Journal of Plant Physiology, 203, 16–28. https://doi.org/10.1016/j.jplph.2016.08.007
  49. Yoo, G., & Kang, H. (2012). Effects of biochar addition on greenhouse gas emissions and microbial responses in a short-term laboratory experiment. Journal of Environmental Quality, 41(4), 1193–1202. https://doi.org/10.2134/jeq2011.0157
  50. Zhang, Q., Lei, H.-M., & Yang, D.-W. (2013). Seasonal variations in soil respiration, heterotrophic respiration and autotrophic respiration of a wheat and maize rotation cropland in the North China Plain. Agricultural and Forest Meteorology, 180, 34–43. https://doi.org/10.1016/j.agrformet.2013.04.028
  51. Zhang, G., Yu, H., Fan, X., Liu, G., Ma, J., & Xu, H. (2015). Effect of rice straw application on stable carbon isotopes, methanogenic pathway, and fraction of CH4 oxidized in a continuously flooded rice field in winter season. Soil Biology and Biochemistry, 84, 75–82. https://doi.org/10.1016/j.soilbio.2015.02.008
  52. Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., Tang, W., Tang, L., Dong, H., Huang, B., Tan, X., & Wang, R. (2019). Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902–922. https://doi.org/10.1016/j.cej.2019.05.139
  53. Zhou, W., Hui, D., & Shen, W. (2014). Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: A laboratory incubation study. PLoS ONE, 9(3), e92531. https://doi.org/10.1371/journal.pone.0092531
  54. Zhu, X., Zhu, T., Pumpanen, J., Palviainen, M., Zhou, X., Kulmala, L., Bruckman, V. J., Köster, E., Köster, K., Aaltonen, H., Makita, N., Wang, Y., & Berninger, F. (2020). Short-term effects of biochar on soil CO2 efflux in boreal Scots pine forests. Annals of Forest Science, 77(2), 59. https://doi.org/10.1007/s13595-020-00960-2
DOI: https://doi.org/10.2478/ahr-2025-0014 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 111 - 120
Submitted on: Feb 24, 2025
Accepted on: Jun 23, 2025
Published on: Nov 18, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Melinda Molnárová, Ján Horák, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.