Have a personal or library account? Click to login
Antimicrobial Activity of Styrax tonkinensis Essential Oil in vitro and in situ Cover

Antimicrobial Activity of Styrax tonkinensis Essential Oil in vitro and in situ

Open Access
|Oct 2024

References

  1. Amiri, A., Mottaghipisheh, J., Jamshidi-Kia, F., Saeidi, K., Vitalini, S., & Iriti, M. (2020). Antimicorbial Potency of Major Functional Foods’ Essential Oils in Liquid and Vapor Phases: A Short Review. Applied Sciences, 10(22), 8103. https://doi.org/10.3390/app10228103
  2. Amorati, R., & Foti, M. C. (2017). Mode of Antioxidant Action of Essential Oils. V S. M. B. Hashemi, A. Mousavi Khaneghah, & A. De Souza Santapos; Ana (Ed.), Essential Oils in Food Processing (1st ed., pp. 267–291), Wiley. https://doi.org/10.1002/9781119149392.ch9
  3. Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51–62. https://doi.org/10.1016/j.tifs.2015.12.001
  4. Braguine, C. G., Bertanha, C. S., Gonçalves, U. O., Magalhães, L. G., Rodrigues, V., Melleiro Gimenez, V. M., Groppo, M., Silva, M. L. A. E., Cunha, W. R., Januário, A. H., & Pauletti, P. M. (2012). Schistosomicidal evaluation of flavonoids from two species of Styrax against Schistosoma mansoni adult worms. Pharmaceutical Biology, 50(7), 925–929. https://doi.org/10.3109/13880209.2011.649857
  5. Burger, P., Casale, A., Kerdudo, A., Michel, T., Laville, R., Chagnaud, F., & Fernandez, X. (2016). New insights in the chemical composition of benzoin balsams. Food Chemistry, 210, 613–622. https://doi.org/10.1016/j.foodchem.2016.05.015
  6. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  7. Büyükkiliç Altinbaşak, B., Issa, G., ZengïN Kurt, B., & DemïRcï, B. (2022). Biological Activities and Chemical Composition of Turkish Sweetgum Balsam (Styrax liquidus) Essential Oil. Bezmialem Science, 10(6), 709–715. https://doi.org/10.14235/bas.galenos.2022.30602
  8. Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems – A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
  9. Čmiková, N., Galovičová, L., Schwarzová, M., Kunová, S., Vukić, M., & Kačániová, M. (2023). Styrax tonkinensis Essential Oil Tested against Different Microorganisms In Vitro. Bioactive natural products. BIO-NATURAL 2023.
  10. Fisher, K., Phillips, C., & McWatt, L. (2009). The use of an antimicrobial citrus vapour to reduce Enterococcus sp. On salad products. International Journal of Food Science & Technology, 44(9), 1748–1754. https://doi.org/10.1111/j.1365-2621.2009.01992.x
  11. Frangos, L., Pyrgotou, N., Giatrakou, V., Ntzimani, A., & Savvaidis, I. N. (2010). Combined effects of salting, oregano oil and vacuum-packaging on the shelf-life of refrigerated trout fillets. Food Microbiology, 27(1), 115–121. https://doi.org/10.1016/j.fm.2009.09.002
  12. Houdkova, M., & Kokoska, L. (2020). Volatile Antimicrobial Agents and In Vitro Methods for Evaluating Their Activity in the Vapour Phase: A Review. Planta Medica, 86(12), 822–857. https://doi.org/10.1055/a-1158-4529
  13. Hu, W., Li, C., Dai, J., Cui, H., & Lin, L. (2019). Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Industrial Crops and Products, 130, 34–41. https://doi.org/10.1016/j.indcrop.2018.12.078
  14. Huang, W.-Y., Cai, Y.-Z., & Zhang, Y. (2009). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1), 1–20. https://doi.org/10.1080/01635580903191585
  15. Inouye, S. (2003). Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. International Journal of Aromatherapy, 13(1), 33–41. https://doi.org/10.1016/S0962-4562(03)00057-2
  16. Kačániová, M., Galovičová, L., Valková, V., Tvrdá, E., Terentjeva, M., Žiarovská, J., Kunová, S., Savitskaya, T., Grinshpan, D., Štefániková, J., Felsöciová, S., Vukovic, N., & Kowalczewski, P. Ł. (2021). Antimicrobial and antioxidant activities of Cinnamomum cassia essential oil and its application in food preservation. Open Chemistry, 19(1), 214–227. https://doi.org/10.1515/chem-2021-0191
  17. Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V., Borotová, P., Kowalczewski, P. Ł., Kunová, S., Felšöciová, S., Tvrdá, E., Žiarovská, J., Benda Prokeinová, R., & Vukovic, N. (2020). Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules, 25(17), 3956. https://doi.org/10.3390/molecules25173956
  18. Kačániová, M., Vukovic, N. L., Čmiková, N., Galovičová, L., Schwarzová, M., Šimora, V., Kowalczewski, P. Ł., Kluz, M. I., Puchalski, C., Bakay, L., & Vukic, M. D. (2023). Salvia sclarea Essential Oil Chemical Composition and Biological Activities. International Journal of Molecular Sciences, 24(6), 5179. https://doi.org/10.3390/ijms24065179
  19. Kumar Sharma, P., Singh, V., & Ali, M. (2016). Chemical Composition and Antimicrobial Activity of Fresh Rhizome Essential Oil of Zingiber Officinale Roscoe. Pharmacognosy Journal, 8(3), 185–190. https://doi.org/10.5530/pj.2016.3.3
  20. Laird, K., & Phillips, C. (2012). Vapour phase: A potential future use for essential oils as antimicrobials: Essential oil vapours and their antimicrobial activity. Letters in Applied Microbiology, 54(3), 169–174. https://doi.org/10.1111/j.1472-765X.2011.03190.x
  21. Lee, S.-J., Lee, J., Song, S., & Lim, K.-T. (2016). Glycoprotein isolated from Styrax japonica Siebold et al. Zuccarini inhibits oxidative and pro-inflammatory responses in HCT116 colonic epithelial cells and dextran sulfate sodium-treated ICR mice. Food and Chemical Toxicology, 87, 12–22. https://doi.org/10.1016/j.fct.2015.11.004
  22. Lima, C. F., Carvalho, F., Fernandes, E., Bastos, M. L., Santos-Gomes, P. C., Fernandes-Ferreira, M., & Pereira-Wilson, C. (2004). Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicology in Vitro, 18(4), 457–465. https://doi.org/10.1016/j.tiv.2004.01.001
  23. Lucera, A., Costa, C., Conte, A., & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00287
  24. Maghenzani, M., Chiabrando, V., Santoro, K., Spadaro, D., & Giacalone, G. (2018). Effects of treatment by vapour of essential oil from Thymus vulgaris and Satureja montana on postharvest quality of sweet cherry (cv. Ferrovia). Journal of Food and Nutrition Research, 57, 161–169.
  25. Mehani, M., & Ladjel, S. (2012). Antimicrobial Effect of Essential Oils of the Plant Eucalyptus camaldulensis on Some Pathogenic Bacteria. International Journal of Environmental Science and Development (pp. 86–88). https://doi.org/10.7763/IJESD.2012.V3.193
  26. Min, B., Cao, T., Hung, T., & Kim, J. (2015). Inhibitory effect on no production of compounds from Styrax obassia. Planta Medica, 81(11). https://doi.org/10.1055/s-0035-1556504
  27. Mir, S. A., Shah, M. A., Mir, M. M., Dar, B. N., Greiner, R., & Roohinejad, S. (2018). Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control, 85, 235–244. https://doi.org/10.1016/j.foodcont.2017.10.006
  28. Mith, H., Duré, R., Delcenserie, V., Zhiri, A., Daube, G., & Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Science & Nutrition, 2(4), 403–416. https://doi.org/10.1002/fsn3.116
  29. Netopilova, M., Houdkova, M., Urbanova, K., Rondevaldova, J., & Kokoska, L. (2021). Validation of Qualitative Broth Volatilization Checkerboard Method for Testing of Essential Oils: Dual-Column GC–FID/MS Analysis and In Vitro Combinatory Antimicrobial Effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in Liquid and Vapor Phases. Plants, 10(2), 393. https://doi.org/10.3390/plants10020393
  30. Obaidat, M. M., & Frank, J. F. (2009). Inactivation of Escherichia coli O157:H7 on the Intact and Damaged Portions of Lettuce and Spinach Leaves by Using Allyl Isothiocyanate, Carvacrol, and Cinnamaldehyde in Vapor Phase. Journal of Food Protection, 72(10), 2046–2055. https://doi.org/10.4315/0362-028X-72.10.2046
  31. Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02161
  32. Pauletti, P. M., Araújo, A. R., Bolzani, V. D. S., & Young, M. C. M. (2002). Triterpenos de Styrax camporum (styracaceae). Química Nova, 25(3), 349–352. https://doi.org/10.1590/S0100-40422002000300002
  33. Romeo, F. V., De Luca, S., Piscopo, A., De Salvo, E., & Poiana, M. (2010). Effect of Some Essential Oils as Natural Food Preservatives on Commercial Grated Carrots. Journal of Essential Oil Research, 22(3), 283–287. https://doi.org/10.1080/10412905.2010.9700325
  34. Snyder, A. B., & Worobo, R. W. (2018). The incidence and impact of microbial spoilage in the production of fruit and vegetable juices as reported by juice manufacturers. Food Control, 85, 144–150. https://doi.org/10.1016/j.foodcont.2017.09.025
  35. Su, H.-J., Chao, C.-J., Chang, H.-Y., & Wu, P.-C. (2007). The effects of evaporating essential oils on indoor air quality. Atmospheric Environment, 41(6), 1230–1236. https://doi.org/10.1016/j.atmosenv.2006.09.044
  36. Timmers, M. A., Guerrero-Medina, J. L., Esposito, D., Grace, M. H., Paredes-López, O., García-Saucedo, P. A., & Lila, M. A. (2015). Characterization of Phenolic Compounds and Antioxidant and Anti-inflammatory Activities from Mamuyo (Styrax ramirezii Greenm.) Fruit. Journal of Agricultural and Food Chemistry, 63(48), 10459–10465. https://doi.org/10.1021/acs.jafc.5b04781
  37. Tyagi, A. K., & Malik, A. (2011). Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chemistry, 126(1), 228–235. https://doi.org/10.1016/j.foodchem.2010.11.002
  38. Wang, F., Hua, H., Pei, Y., Chen, D., & Jing, Y. (2006a). Triterpenoids from the Resin of Styrax tonkinensis and Their Antiproliferative and Differentiation Effects in Human Leukemia HL-60 Cells. Journal of Natural Products, 69(5), 807–810. https://doi.org/10.1021/np050371z
  39. Wang, F., Hua, H.-M., Bian, X., Pei, Y.-H., & Jing, Y.-K. (2006b). Two new aromatic compounds from the resin of Styrax tonkinensis (Pier.) Craib. Journal of Asian Natural Products Research, 8(1–2), 137–141. https://doi.org/10.1080/10286020500480712
  40. Wang, F., Wang, Y.-B., Chen, H., Chen, L., Liang, S.-W., & Wang, S.-M. (2015). Two new triterpenoids from the resin of Styrax tonkinensis. Journal of Asian Natural Products Research, 17(8), 823–827. https://doi.org/10.1080/10286020.2015.1030399
  41. Wang, F., Zhang, L., Zhang, Q., Chen, A., Wang, S., & Fang, Z. (2020). Two new phenylpropanoids from the resin of Styrax tonkinensis (Pierre) Craib ex Hartw. Journal of Natural Medicines, 74(4), 819–824. https://doi.org/10.1007/s11418-020-01437-2
  42. Wang, Q., Ou, Z., Lei, H., Zeng, X., Ying, Y., & Bai, W. (2012). Antimicrobial Activities Of A New Formula Of Spice Water Extracts Against Foodborne Bacteria: Antimicrobial Activity Of A New Food Preservative. Journal of Food Processing and Preservation, 36(4), 374–381. https://doi.org/10.1111/j.1745-4549.2012.00691.x
  43. Wang, T., Zhao, L., Sun, Y., Ren, F., Chen, S., Zhang, H., & Guo, H. (2016). Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing. Meat Science, 121, 253–260. https://doi.org/10.1016/j.meatsci.2016.06.021
  44. Wrona, M., Bentayeb, K., & Nerín, C. (2015). A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus). Food Control, 54, 200–207. https://doi.org/10.1016/j.foodcont.2015.02.008
  45. Yayla, Y., Alankuş-Çalışkan, Ö., Anıl, H., Bates, R. B., Stessman, C. C., & Kane, V. V. (2002). Saponins from Styrax officinalis. Fitoterapia, 73(4), 320–326. https://doi.org/10.1016/S0367-326X(02)00086-2
  46. Zhen-Feng, F. (2012). Chemical Constituents from Resin of Styrax tonkinensis. Chinese Journal of Experimental Traditional Medical Formulae. https://www.semanticscholar.org/paper/Chemical-Constituents-from-Resin-of-Styrax-Zhen-feng/ab67248abe2c948f2b1a46d3026741e1a38a3770
DOI: https://doi.org/10.2478/ahr-2024-0020 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 131 - 137
Submitted on: Feb 28, 2024
Accepted on: May 27, 2024
Published on: Oct 30, 2024
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Andrea Verešová, Natália Čmiková, Milena Vukic, Zhaojun Ban, Joel H. Elizondo-Luevano, Miroslava Kačániová, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.