References
- Amiri, A., Mottaghipisheh, J., Jamshidi-Kia, F., Saeidi, K., Vitalini, S., & Iriti, M. (2020). Antimicorbial Potency of Major Functional Foods’ Essential Oils in Liquid and Vapor Phases: A Short Review. Applied Sciences, 10(22), 8103. https://doi.org/10.3390/app10228103
- Amorati, R., & Foti, M. C. (2017). Mode of Antioxidant Action of Essential Oils. V S. M. B. Hashemi, A. Mousavi Khaneghah, & A. De Souza Santapos; Ana (Ed.), Essential Oils in Food Processing (1st ed., pp. 267–291), Wiley. https://doi.org/10.1002/9781119149392.ch9
- Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51–62. https://doi.org/10.1016/j.tifs.2015.12.001
- Braguine, C. G., Bertanha, C. S., Gonçalves, U. O., Magalhães, L. G., Rodrigues, V., Melleiro Gimenez, V. M., Groppo, M., Silva, M. L. A. E., Cunha, W. R., Januário, A. H., & Pauletti, P. M. (2012). Schistosomicidal evaluation of flavonoids from two species of Styrax against Schistosoma mansoni adult worms. Pharmaceutical Biology, 50(7), 925–929. https://doi.org/10.3109/13880209.2011.649857
- Burger, P., Casale, A., Kerdudo, A., Michel, T., Laville, R., Chagnaud, F., & Fernandez, X. (2016). New insights in the chemical composition of benzoin balsams. Food Chemistry, 210, 613–622. https://doi.org/10.1016/j.foodchem.2016.05.015
- Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
- Büyükkiliç Altinbaşak, B., Issa, G., ZengïN Kurt, B., & DemïRcï, B. (2022). Biological Activities and Chemical Composition of Turkish Sweetgum Balsam (Styrax liquidus) Essential Oil. Bezmialem Science, 10(6), 709–715. https://doi.org/10.14235/bas.galenos.2022.30602
- Calo, J. R., Crandall, P. G., O’Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems – A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
- Čmiková, N., Galovičová, L., Schwarzová, M., Kunová, S., Vukić, M., & Kačániová, M. (2023). Styrax tonkinensis Essential Oil Tested against Different Microorganisms In Vitro. Bioactive natural products. BIO-NATURAL 2023.
- Fisher, K., Phillips, C., & McWatt, L. (2009). The use of an antimicrobial citrus vapour to reduce Enterococcus sp. On salad products. International Journal of Food Science & Technology, 44(9), 1748–1754. https://doi.org/10.1111/j.1365-2621.2009.01992.x
- Frangos, L., Pyrgotou, N., Giatrakou, V., Ntzimani, A., & Savvaidis, I. N. (2010). Combined effects of salting, oregano oil and vacuum-packaging on the shelf-life of refrigerated trout fillets. Food Microbiology, 27(1), 115–121. https://doi.org/10.1016/j.fm.2009.09.002
- Houdkova, M., & Kokoska, L. (2020). Volatile Antimicrobial Agents and In Vitro Methods for Evaluating Their Activity in the Vapour Phase: A Review. Planta Medica, 86(12), 822–857. https://doi.org/10.1055/a-1158-4529
- Hu, W., Li, C., Dai, J., Cui, H., & Lin, L. (2019). Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Industrial Crops and Products, 130, 34–41. https://doi.org/10.1016/j.indcrop.2018.12.078
- Huang, W.-Y., Cai, Y.-Z., & Zhang, Y. (2009). Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential Use for Cancer Prevention. Nutrition and Cancer, 62(1), 1–20. https://doi.org/10.1080/01635580903191585
- Inouye, S. (2003). Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. International Journal of Aromatherapy, 13(1), 33–41. https://doi.org/10.1016/S0962-4562(03)00057-2
- Kačániová, M., Galovičová, L., Valková, V., Tvrdá, E., Terentjeva, M., Žiarovská, J., Kunová, S., Savitskaya, T., Grinshpan, D., Štefániková, J., Felsöciová, S., Vukovic, N., & Kowalczewski, P. Ł. (2021). Antimicrobial and antioxidant activities of Cinnamomum cassia essential oil and its application in food preservation. Open Chemistry, 19(1), 214–227. https://doi.org/10.1515/chem-2021-0191
- Kačániová, M., Terentjeva, M., Galovičová, L., Ivanišová, E., Štefániková, J., Valková, V., Borotová, P., Kowalczewski, P. Ł., Kunová, S., Felšöciová, S., Tvrdá, E., Žiarovská, J., Benda Prokeinová, R., & Vukovic, N. (2020). Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and Its Application in a Food Model. Molecules, 25(17), 3956. https://doi.org/10.3390/molecules25173956
- Kačániová, M., Vukovic, N. L., Čmiková, N., Galovičová, L., Schwarzová, M., Šimora, V., Kowalczewski, P. Ł., Kluz, M. I., Puchalski, C., Bakay, L., & Vukic, M. D. (2023). Salvia sclarea Essential Oil Chemical Composition and Biological Activities. International Journal of Molecular Sciences, 24(6), 5179. https://doi.org/10.3390/ijms24065179
- Kumar Sharma, P., Singh, V., & Ali, M. (2016). Chemical Composition and Antimicrobial Activity of Fresh Rhizome Essential Oil of Zingiber Officinale Roscoe. Pharmacognosy Journal, 8(3), 185–190. https://doi.org/10.5530/pj.2016.3.3
- Laird, K., & Phillips, C. (2012). Vapour phase: A potential future use for essential oils as antimicrobials: Essential oil vapours and their antimicrobial activity. Letters in Applied Microbiology, 54(3), 169–174. https://doi.org/10.1111/j.1472-765X.2011.03190.x
- Lee, S.-J., Lee, J., Song, S., & Lim, K.-T. (2016). Glycoprotein isolated from Styrax japonica Siebold et al. Zuccarini inhibits oxidative and pro-inflammatory responses in HCT116 colonic epithelial cells and dextran sulfate sodium-treated ICR mice. Food and Chemical Toxicology, 87, 12–22. https://doi.org/10.1016/j.fct.2015.11.004
- Lima, C. F., Carvalho, F., Fernandes, E., Bastos, M. L., Santos-Gomes, P. C., Fernandes-Ferreira, M., & Pereira-Wilson, C. (2004). Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicology in Vitro, 18(4), 457–465. https://doi.org/10.1016/j.tiv.2004.01.001
- Lucera, A., Costa, C., Conte, A., & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00287
- Maghenzani, M., Chiabrando, V., Santoro, K., Spadaro, D., & Giacalone, G. (2018). Effects of treatment by vapour of essential oil from Thymus vulgaris and Satureja montana on postharvest quality of sweet cherry (cv. Ferrovia). Journal of Food and Nutrition Research, 57, 161–169.
- Mehani, M., & Ladjel, S. (2012). Antimicrobial Effect of Essential Oils of the Plant Eucalyptus camaldulensis on Some Pathogenic Bacteria. International Journal of Environmental Science and Development (pp. 86–88). https://doi.org/10.7763/IJESD.2012.V3.193
- Min, B., Cao, T., Hung, T., & Kim, J. (2015). Inhibitory effect on no production of compounds from Styrax obassia. Planta Medica, 81(11). https://doi.org/10.1055/s-0035-1556504
- Mir, S. A., Shah, M. A., Mir, M. M., Dar, B. N., Greiner, R., & Roohinejad, S. (2018). Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control, 85, 235–244. https://doi.org/10.1016/j.foodcont.2017.10.006
- Mith, H., Duré, R., Delcenserie, V., Zhiri, A., Daube, G., & Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Science & Nutrition, 2(4), 403–416. https://doi.org/10.1002/fsn3.116
- Netopilova, M., Houdkova, M., Urbanova, K., Rondevaldova, J., & Kokoska, L. (2021). Validation of Qualitative Broth Volatilization Checkerboard Method for Testing of Essential Oils: Dual-Column GC–FID/MS Analysis and In Vitro Combinatory Antimicrobial Effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in Liquid and Vapor Phases. Plants, 10(2), 393. https://doi.org/10.3390/plants10020393
- Obaidat, M. M., & Frank, J. F. (2009). Inactivation of Escherichia coli O157:H7 on the Intact and Damaged Portions of Lettuce and Spinach Leaves by Using Allyl Isothiocyanate, Carvacrol, and Cinnamaldehyde in Vapor Phase. Journal of Food Protection, 72(10), 2046–2055. https://doi.org/10.4315/0362-028X-72.10.2046
- Pandey, A. K., Kumar, P., Singh, P., Tripathi, N. N., & Bajpai, V. K. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.02161
- Pauletti, P. M., Araújo, A. R., Bolzani, V. D. S., & Young, M. C. M. (2002). Triterpenos de Styrax camporum (styracaceae). Química Nova, 25(3), 349–352. https://doi.org/10.1590/S0100-40422002000300002
- Romeo, F. V., De Luca, S., Piscopo, A., De Salvo, E., & Poiana, M. (2010). Effect of Some Essential Oils as Natural Food Preservatives on Commercial Grated Carrots. Journal of Essential Oil Research, 22(3), 283–287. https://doi.org/10.1080/10412905.2010.9700325
- Snyder, A. B., & Worobo, R. W. (2018). The incidence and impact of microbial spoilage in the production of fruit and vegetable juices as reported by juice manufacturers. Food Control, 85, 144–150. https://doi.org/10.1016/j.foodcont.2017.09.025
- Su, H.-J., Chao, C.-J., Chang, H.-Y., & Wu, P.-C. (2007). The effects of evaporating essential oils on indoor air quality. Atmospheric Environment, 41(6), 1230–1236. https://doi.org/10.1016/j.atmosenv.2006.09.044
- Timmers, M. A., Guerrero-Medina, J. L., Esposito, D., Grace, M. H., Paredes-López, O., García-Saucedo, P. A., & Lila, M. A. (2015). Characterization of Phenolic Compounds and Antioxidant and Anti-inflammatory Activities from Mamuyo (Styrax ramirezii Greenm.) Fruit. Journal of Agricultural and Food Chemistry, 63(48), 10459–10465. https://doi.org/10.1021/acs.jafc.5b04781
- Tyagi, A. K., & Malik, A. (2011). Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chemistry, 126(1), 228–235. https://doi.org/10.1016/j.foodchem.2010.11.002
- Wang, F., Hua, H., Pei, Y., Chen, D., & Jing, Y. (2006a). Triterpenoids from the Resin of Styrax tonkinensis and Their Antiproliferative and Differentiation Effects in Human Leukemia HL-60 Cells. Journal of Natural Products, 69(5), 807–810. https://doi.org/10.1021/np050371z
- Wang, F., Hua, H.-M., Bian, X., Pei, Y.-H., & Jing, Y.-K. (2006b). Two new aromatic compounds from the resin of Styrax tonkinensis (Pier.) Craib. Journal of Asian Natural Products Research, 8(1–2), 137–141. https://doi.org/10.1080/10286020500480712
- Wang, F., Wang, Y.-B., Chen, H., Chen, L., Liang, S.-W., & Wang, S.-M. (2015). Two new triterpenoids from the resin of Styrax tonkinensis. Journal of Asian Natural Products Research, 17(8), 823–827. https://doi.org/10.1080/10286020.2015.1030399
- Wang, F., Zhang, L., Zhang, Q., Chen, A., Wang, S., & Fang, Z. (2020). Two new phenylpropanoids from the resin of Styrax tonkinensis (Pierre) Craib ex Hartw. Journal of Natural Medicines, 74(4), 819–824. https://doi.org/10.1007/s11418-020-01437-2
- Wang, Q., Ou, Z., Lei, H., Zeng, X., Ying, Y., & Bai, W. (2012). Antimicrobial Activities Of A New Formula Of Spice Water Extracts Against Foodborne Bacteria: Antimicrobial Activity Of A New Food Preservative. Journal of Food Processing and Preservation, 36(4), 374–381. https://doi.org/10.1111/j.1745-4549.2012.00691.x
- Wang, T., Zhao, L., Sun, Y., Ren, F., Chen, S., Zhang, H., & Guo, H. (2016). Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing. Meat Science, 121, 253–260. https://doi.org/10.1016/j.meatsci.2016.06.021
- Wrona, M., Bentayeb, K., & Nerín, C. (2015). A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus). Food Control, 54, 200–207. https://doi.org/10.1016/j.foodcont.2015.02.008
- Yayla, Y., Alankuş-Çalışkan, Ö., Anıl, H., Bates, R. B., Stessman, C. C., & Kane, V. V. (2002). Saponins from Styrax officinalis. Fitoterapia, 73(4), 320–326. https://doi.org/10.1016/S0367-326X(02)00086-2
- Zhen-Feng, F. (2012). Chemical Constituents from Resin of Styrax tonkinensis. Chinese Journal of Experimental Traditional Medical Formulae. https://www.semanticscholar.org/paper/Chemical-Constituents-from-Resin-of-Styrax-Zhen-feng/ab67248abe2c948f2b1a46d3026741e1a38a3770