Have a personal or library account? Click to login
A Properly Chosen Rate of NPK Fertilizers Has a Positive Effect on C Sequestration in Sandy Soils in the Conditions of a Changing Climate Cover

A Properly Chosen Rate of NPK Fertilizers Has a Positive Effect on C Sequestration in Sandy Soils in the Conditions of a Changing Climate

Open Access
|Apr 2024

References

  1. Bielek, P. (2001). Carbon sequestration by soil effects. In A. Zaujec, P. Bielek & S. S. Gonet (Eds.), Humic substances in ecosystems 4 (pp. 11–14). VUPOP.
  2. Bronick, C. J., & Lal, R. (2005). Soil structure and land management: a review. Geoderma, 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
  3. Bughio, M. A., Wang, P., Meng, F., Qing, C., Kuzyakov, Y., Wang, X., & Junejo, S. A. (2016). Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil. Geoderma, 262, 12–19. https://doi.org/10.1016/j.geoderma.2015.08.003
  4. Dong, W. Y., Zhang, X. Y., Dai, X. Q., Fux, L., Yang, F. T., Liu, X. Y., Sun, X. M., Wen, X. F., & Schaeffer, S. (2014). Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology, 84, 140–147. https://doi.org/10.1016/j.apsoil.2014.06.007
  5. Elliott, E. T. (1986). Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of American Journal, 50, 627–633. https://doi.org/10.2136/sssaj1986.03615995005000030017x
  6. Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., Grečo, V., Chlpík, J., Kobza, J., Lištjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., Styk, J., & Širáň, M. (2011). The uniform methods of soil analysis. VÚPOP.
  7. IUSS Working Group (WRB). (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps (World Soil Resources Reports No. 106). FAO.
  8. Chojnicki, J., Stepień, W., Kwasowski, W., Uzarowicz, Ł., & Piotrowski, M. (2016). Soil of the experimental facility of the faculty of agriculture and biology of the Warsaw University of Life Sciences in Miedniewice. Warsaw University of Life Sciences.
  9. Jankowski, M., Šimanský, V., Markiewicz, M., Pilichowska, A., & Michalak, J. (2018). Differently used soils of the Tribeč mountain range and Nitra valley slope. In M. Switoniak & P. Charzyński (Eds.). Soil Sequences Atlas IV (pp. 139–158). Nicolaus Copernicus University.
  10. Jonczak, J. (2021). Long-term effect of crops and fertilization on soil eco-chemical state. Acta Horticulturae et Regiotecturae, 24(1), 21–27. https://doi.org/10.2478/ahr-2021-0021
  11. Kimble, J.M., Lal, R., & Grossmann, R.B. (1998). Alternation of soil properties caused by climatic change. Advances in Geoecology, 31, 175–184.
  12. Kobierski, M., Kondratowicz-Maciejewska, K., Banach-Szott, M., Wojewódzki, P., & Castejón, J.M.P. (2018). Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. Journal of Soils and Sediments, 18, 2777–2789. https://doi.org/10.1007/s11368-018-1935-1
  13. Ratzke, C., & Gore, J. (2018) Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biology, 16, e2004248. https://doi.org/10.1371/journal.pbio.2004248
  14. Semenov, V. M., Ivannikova, L. A., Kuznetsova, T. V., Semenova, N. A., & Tulina, A. S. (2008). Mineralization of organic matter and the carbon sequestration capacity of zonal soils. Eurasian Soil Science, 41, 717–730. https://doi.org/10.1134/S1064229308070065
  15. Six, J., Conant, R.T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155–176. https://doi.org/10.1023/A:1016125726789
  16. Šimanský, V., & Horvathová, M. (2010). Particle-size distribution and organic matter in selected soil types of Slovakia. In J. Sobocká (Ed.), Zborník prednášok z VIII. zjazdu Slovenskej spoločnosti pre poľnohospodárske, lesnícke, potravinárske a veterinárske vedy pri SAV v Bratislave (pp. 32–37). VUPOP, SAV.
  17. Šimanský, V., Horák, J., Kováčik, P., & Bajčan, D. (2017). Carbon sequestration in water-stable aggregates under biochar and biochar with nitrogen fertilization. Bulgarian Journal of Agricultural Science, 23(3), 429–435.
  18. Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, L., & Stapień, W. (2019). How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma. 342, 75–84. https://doi.org/10.1016/j.geoderma.2019.02.020
  19. Tian, K., Zhao, Y., Xu, X., Hai, N., Huang, B., & Deng, W. (2015). Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agriculture, Ecosystems & Environment, 204, 40–50. https://doi.org/10.1016/j.agee.2015.02.008
  20. Weil, R. R., & Brady, N. C. (2017). The nature and properties of soils. Pearson Education Limited, 1104.
  21. Yost, J. L., & Hartemink, A. E. (2019). Soil organic carbon in sandy soils: A review. Advances in Agronomy, 158, 217–310.
  22. Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: forms and formation processes. Earth-Science Reviews, 157, 1–7. https://doi.org/10.1016/j.earscirev.2016.03.003
DOI: https://doi.org/10.2478/ahr-2024-0004 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 23 - 28
Submitted on: Aug 30, 2023
Accepted on: Dec 16, 2023
Published on: Apr 23, 2024
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Vladimír Šimanský, Jerzy Jonczak, Jarmila Horváthová, Martin Juriga, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.