Have a personal or library account? Click to login
Analysis of precipitation in the Danube Lowland (Slovakia) in 1921–2020 Cover

Analysis of precipitation in the Danube Lowland (Slovakia) in 1921–2020

Open Access
|Nov 2022

References

  1. Betts, R. A., Alfieri, L., Bradshaw, C., Caesar, J., Feyen, L., Friedlingstein, P., Gohar, L., Koutroulis, A., Lewis, K., Morfopoulos, C., Papadimitriou, L., Richardson, K. J., Tsanis, I., & Wyser, K. (2018). Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 °C and 2 °C global warming with a higher-resolution global climate model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160452. https://doi.org/10.1098/rsta.2016.0452
  2. Brezianská, K., & Vitková, J. (2015). Analýza bezzrážkových období a ich vplyv na zásobu vody v pôde na Záhorskej nížine [Analyse of Periods Without Precipitation and their Influence on Soil Water Storage at Záhorská Lowland]. Acta Hydrologica Slovaca, 16 (TC1), 260–266.
  3. Buhairi, M. H. (2010). Analysis of monthly, seasonal and annual air temperature variability and trends in Taiz city – Republic of Yemen. Journal of Environmental Protection, 01(04), 401–409. https://doi.org/10.4236/jep.2010.14046
  4. Čimo, J., Aydin, E., Šinka, K., Tárník, A., Kišš, V., Halaj, P., Toková, L., & Kotuš, T. (2020). Change in the Length of the Vegetation Period of Tomato (Solanum lycopersicum L.), White Cabbage (Brassica oleracea L. var. capitata) and Carrot (Daucus carota L.) Due to Climate Change in Slovakia. Agronomy-Basel, 10(8). https://doi.org/10.3390/agronomy10081110
  5. Čimo, J., Kotuš, T., Kišš, V., & Shaikh, J. (2021). Evaluating manifestations in climate change of Danube lowland in Slovakia. 21st International Multidisciplinary Scientific GeoConference SGEM 2021 (pp. 277–284). https://doi.org/10.5593/sgem2021/4.1/s19.45
  6. Eekhout, J. P., Hunink, J. E., Terink, W., & De Vente, J. (2018). Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences, 22(11), 5935–5946. https://doi.org/10.5194/hess-22-5935-2018
  7. European state of the climate 2020. (2021, April 18). Copernicus. https://climate.copernicus.eu/ESOTC/2020
  8. Fendeková, M., Gauster, T., Labudová, L., Vrablíková, D., Danáčová, Z., Fendek, M., & Pekárová, P. (2018). Analysing 21st century meteorological and hydrological drought events in Slovakia. Journal of Hydrology and Hydromechanics, 66(4), 393–403. https://doi.org/10.2478/johh-2018-0026
  9. Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and sen‘s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014
  10. Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009
  11. Karpouzos, D. K., Kavalieratou, S., & Babajimopoulos, C. (2010). Trend Analysis of Precipitation Data in Pieria Region (Greece). European Water, 30, 31–40.
  12. Kendall, M. G. (1975). Rank correlation methods: 10 tab.
  13. Kim, S., Sharma, A., Wasko, C., & Nathan, R. (2022). Linking total precipitable water to precipitation extremes globally. Earth‘s Future, 10(2). https://doi.org/10.1029/2021ef002473
  14. Kišš, V., Pagáč, J., Čimo, J., & Tárník, A. (2022). Visualisation of changes in vegetation periods due to climate change in Slovakia and their predictions for the period 2050, 2080 and 2110. In Ecological and environmental engineering: 3rd international scientific conference, 28 June–1 July 2022, Poznań : Book of abstracts.
  15. Koutroulis, A., Papadimitriou, L., Grillakis, M., Tsanis, I., Wyser, K., & Betts, R. (2018). Freshwater vulnerability under high end climate change. A pan-European assessment. Science of The Total Environment, 613–614, 271–286. https://doi.org/10.1016/j.scitotenv.2017.09.074
  16. Kundzewicz, Z., Radziejewski, M., & Pínskwar, I. (2006). Precipitation extremes in the changing climate of Europe. Climate Research, 31, 51–58. https://doi.org/10.3354/cr031051
  17. Kunkel, K. E., Andsager, K., & Easterling, D. R. (1999). Long-term trends in extreme precipitation events over the conterminous United States and Canada. Journal of Climate, 12(8), 2515–2527. https://doi.org/10.1175/1520-0442(1999)012<2515:lttiep>2.0.co;2
  18. Kunkel, K. E., Easterling, D. R., Redmond, K., & Hubbard, K. (2003). Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophysical Research Letters, 30(17), 5-1–5-4. https://doi.org/10.1029/2003gl018052
  19. Lapin, M., Faško, P., Melo, M., Šťastný, P., & Tomlain, J. (2002). Klimatické oblasti [Climatic regions]. In Atlas krajiny Slovenskej republiky. Bratislava: MŽP SR.
  20. Libiseller, C., & Grimvall, A. (2002). Performance of partial Mann-Kendall tests for trend detection in the presence of covariates. Environmetrics, 13(1), 71–84. https://doi.org/10.1002/env.507
  21. Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318
  22. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187
  23. Markovič, L., Pecho, J., & Faško, P. (2020). Zmeny v skupenskom zastúpení atmosférických zrážok v zime na území Slovenska [Changes in phase of precipitation during winter in Slovakia]. Meteorologické zprávy, 73.
  24. Mukherjee, S., Aadhar, S., Stone, D., & Mishra, V. (2018). Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20, 45–53. https://doi.org/10.1016/j.wace.2018.03.005
  25. Najvyšší kontrolný úrad (2021). Správa o výsledku kontroly Pripravenosť Slovenskej republiky na dopady sucha [Report on the result of the inspection Preparedness of the Slovak Republic for the effects of drought].
  26. Önöz, B., & Bayazit, M. (2012). Block bootstrap for Mann-Kendall trend test of serially dependent data. Hydrological Processes, 26(23), 3552–3560. https://doi.org/10.1002/hyp.8438
  27. Riedel, T., & Weber, T. K. (2020). Review: The influence of global change on Europe’s water cycle and groundwater recharge. Hydrogeology Journal, 28(6), 1939–1959. https://doi.org/10.1007/s10040-020-02165-3
  28. Šefčík, P., Maglay, J., Fordinál, K., & Moravcová, M. (2019). Pôdy Podunajskej roviny a ich vývoj v kvartéri [Soils of the Danube Plain and their development in the Post-Tertiary]. Otevřený kongres české geologické společnosti a Slovenskej geologickej spoločnosti, Beroun. 67.
  29. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall‘s tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  30. Slovenský hydrometeorologický ústav (2022). Klimatické pomery Slovenskej republiky [Climatic conditions of the Slovak Republic]. https://www.shmu.sk/sk/?page=1064
  31. Sobocká, J. (2005). Klimatická zmena a jej možné dopady na pôdny fond Slovenska [Climate change and its possible impacts on the soil of Slovakia].
  32. Šurda, P., Vitková, J., & Rončák, P. (2020). Regional drought assessment based on the meteorological indices. Bulletin of the Georgian National Academy of Sciences, 14(2), 9–84.
  33. Šútor, J., Šurda, P., & Štekauerová, V. (2011). Vplyv bezzrážkových období na dynamiku zásob vody v zone aerácie pôdy [Effect of the Time Periods Without Precipitation on Water Storage Dynamics in the Aeration Zone of the Soil]. Acta Hydrologica Slovaca, 12, (1), 22–28.
  34. Vido, J., & Nalevanková, P. (2020). Drought in the upper Hron region (Slovakia) between the years 1984–2014. Water, 12(10), 2887. https://doi.org/10.3390/w12102887
  35. Wang, Y. (2005). Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 32(9). https://doi.org/10.1029/2005gl022574
  36. World Meteorological Organization. (1992). International Meteorological Vocabulary.
  37. Zeleňáková, M., & Fendeková, M. (2018). Climate Change Impacts on Water Resources. In Negm, A. M., & Zeleňáková, M. (2018). Water resources in Slovakia: Part II: Climate change, drought and floods. https://doi.org/10.1007/698_2018_268
  38. Zeleňáková, M., Vido, J., Portela, M. M., Purcz, P. Blištán, P., Hlavatá, H., & Hluštík, P. (2017). Precipitation Trends over Slovakia in the Period 1981–2013. Water, 9(12), 922. https://doi.org/10.3390/w9120922
DOI: https://doi.org/10.2478/ahr-2022-0024 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 197 - 202
Submitted on: May 27, 2022
Accepted on: Sep 19, 2022
Published on: Nov 1, 2022
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Vladimír Kišš, Ján Čimo, Andrej Tárník, Jakub Pagáč, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.