Have a personal or library account? Click to login
Hydraulic performance assessment of a multi-layered landfill cover system under constant water ponding Cover

Hydraulic performance assessment of a multi-layered landfill cover system under constant water ponding

Open Access
|Nov 2022

References

  1. Abbasi, F., Javaux, M., Vanclooster, M., & Feyen, J. (2012). Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 189–190, 480–490. https://doi.org/10.1016/j.geoderma.2012.06.013
  2. Abdolahzadeh, A. M., Lacroix Vachon, B., & Cabral, A. R. (2011). Evaluation of the effectiveness of a cover with capillary barrier effect to control percolation into a waste disposal facility. Can. Geotech. J., 48, 996–1009. https://doi.org/10.1139/t11-017
  3. Albright, W. H., Benson, C. H., & Apiwantragoon, P. (2012). Field hydrology of landfill final covers with composite barrier layers. J. Geotech. Geoenvironmental Eng., 139, 1–12. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000741
  4. Albright, W. H., Benson, C. H., Gee, G. W., Abichou, T., Tyler, S. W., & Rock, S. A. (2006). Field performance of three compacted clay landfill covers. Vadose Zo. J., 5, 1157–1171. https://doi.org/10.2136/vzj2005.0134
  5. Albright, W. H., Benson, C. H., Gee, G. W., Roesler, A. C., Abichou, T., Apiwantragoon, P., Lyles, B. F., & Rock, S.A. (2004). Field water balance of landfill final covers. J. Environ. Qual., 33, 2317–2332. https://doi.org/10.2134/jeq2004.2317
  6. Aljaradin, M., & Persson, K.M. (2015). Numerical evaluation of different landfill daily cover in semiarid areas-Jordan. Int. J. Environ. Waste Manag. 16, 95–111. http://dx.doi.org/10.1504/IJEWM.2015.071286
  7. Andreas, L., Diener, S., & Lagerkvist, A. (2014). Steel slags in a landfill top cover – Experiences from a full-scale experiment. Waste Manag., 34, 692–701. https://doi.org/10.1016/j.wasman.2013.12.003
  8. Barnswell, K., & Dwyer, D. (2011). Assessing the performance of evapotranspiration covers for municipal solid waste landfills in Northwestern Ohio. J. Environ. Eng., 137, 301–305. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000326
  9. Benson, B. C. H., Daniel, D. E., & Boutwell, G.P. (1999). Field performance of compacted clay liners. J. Geotech. Geoenvironmental Eng., 125, 390–403. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:5(390)
  10. Benson, C., Abichou, T., Albright, W., Gee, G., & Roesler, A. (2001). Field evaluation of alternative earthen final covers. Int. J. Phytoremediation, 3, 105–127. https://doi.org/10.1080/15226510108500052
  11. Benson, C. H., & Khire, M. V. (1995). Earthen covers for semiarid and arid climates. Landfill Closures-Environmental Protection and Land Recovery, 201–217.
  12. Benson, C. H., Thorstad, P. A., Jo, H.-Y., & Rock, S. A. (2007). Hydraulic performance of geosynthetic clay liners in a landfill final cover. J. Geotech. Geoenvironmental Eng., 133, 814–827. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(814)
  13. Bohnhoff, G. L., Ogorzalek, A. S., Benson, C. H., Shackelford, C. D., & Apiwantragoon, P. (2009). Field data and water-balance predictions for a monolithic cover in a semiarid climate. J. Geotech. Geoenvironmental Eng., 135, 333–348. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(333)
  14. Brooks, R. H., & Corey, A. T. (1966). Properties of porous media affecting fluid flow. Journal of the irrigation and drainage division, 92(2), 61–88. https://doi.org/10.1061/JRCEA4.0000425
  15. Chapuis, R. P. (2013). Full-scale evaluation of the performance of three compacted clay liners. Geotech. Test. J., 36, 1–9. https://doi.org/10.1520/GTJ20120198
  16. Cuevas, J., Ruiz, A. I., de Soto, I. S., Sevilla, T., Procopio, J. R., Da Silva, P., Gismera, M. J., Regadío, M., Sánchez Jiménez, N., Rodríguez Rastrero, M., & Leguey, S. (2012). The performance of natural clay as a barrier to the diffusion of municipal solid waste landfill leachates. J. Environ. Manage., 95, S175–S181. https://doi.org/10.1016/j.jenvman.2011.02.014
  17. Fredlund, D. G., Sheng, D., & Zhao, J. (2011). Estimation of soil suction from the soil-water characteristic curve. Canadian geotechnical journal, 48(2), 186–198. https://doi.org/10.1139/T10-060
  18. Gallage, C., Kodikara, J., & Uchimura, T. (2013). Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils Found, 53(3), 417–430. https://doi.org/10.1016/j.sandf.2013.04.004
  19. Gapak, Y., & Tadikonda, V. B. (2018). Hysteretic water-retention behavior of bentonites. Journal of Hazardous, Toxic, and Radioactive Waste, 22(3), 04018008. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000398
  20. Guerrero, L. A., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Manag., 33(1), 220–232. https://doi.org/10.1016/j.wasman.2012.09.008
  21. Harnas, F. R., Rahardjo, H., Leong, E. C., & Wang, J. Y. (2014). Experimental study on dual capillary barrier using recycled asphalt pavement materials. Can. Geotech. J., 51, 1165–1177. https://doi.org/10.1139/cgj-2013-0432
  22. Hauser, V. L., Weand, B. L., & Gill, M. D. (2001). Natural covers for landfills and buried waste. Journal of Environmental Engineering, 127(9), 768–775. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:9(768)
  23. Henken-Mellies, W.U., & Schweizer, A. (2011). Long-term performance of landfill covers – Results of lysimeter test fields in Bavaria (Germany). Waste Manag. Res., 29, 59–68. https://doi.org/10.1177/0734242X10385748
  24. Ibrahim, A., Mukhlisin, M., & Jaafar, O. (2014). Rainfall infiltration through unsaturated layered soil column. Sains Malaysiana, 43, 1477–1484.
  25. Indrawan, I. G. B., Rahardjo, H., & Leong, E.-C. (2007). Drying and wetting characteristics of a two-layer soil column. Can. Geotech. J., 44, 20–32. https://doi.org/10.1139/t06-090
  26. Kelln, C. J., Barbour, S. L., Elshorbagy, A., & Qualizza, C. (2006). Long-term performance of a reclamation cover: the evaluation of hydraulic properties and hydrologic response. Unsaturated Soil, 813–824. https://doi.org/10.1061/40802(189)64
  27. Khire, M. V., Benson, C. H., & Bosscher, P. J. (2000). Capillary barriers: Design variables and water balance. J. Geotech. Geoenvironmental Eng., 126, 695–708.
  28. Kraus, J. F., Benson, C. H., Erickson, A. E., & Chamberlain, E. J. (1997). Freeze-thaw cycling and hydraulic conductivity of bentonite barriers. J. Geotech. Geoenvironmental Eng., 123, 229–238. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(229)
  29. Laner, D., Crest, M., Scharff, H., Morris, J. W. F., & Barlaz, M. A. (2012). A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag., 32, 498–512. https://doi.org/10.1016/j.wasman.2011.11.010
  30. Lee, L. M., Kassim, A., & Gofar, N. (2011). Performances of two instrumented laboratory models for the study of rainfall infiltration into unsaturated soils. Eng. Geol., 117, 78–89. https://doi.org/10.1016/j.enggeo.2010.10.007
  31. Li, J. H., Du, L., Chen, R., & Zhang, L. M. (2013). Numerical investigation of the performance of covers with capillary barrier effects in South China. Comput. Geotech., 48, 304–315. https://doi.org/10.1016/j.compgeo.2012.08.008
  32. Luellen, J. R., & Brydges, J. M. (2005). Long-term hydraulic performance evaluation for a multilayer closure cap. Pract. Period. Hazard. Toxic Radioact. Waste Manage., 9, 237–244. https://doi.org/10.1061/(ASCE)1090-025X(2005)9:4(237)
  33. McCartney, J. S., & Zornberg, J. G. (2010). Effects of infiltration and evaporation on geosynthetic capillary barrier performance. Can. Geotech. J., 47, 1201–1213. https://doi.org/10.1139/T10-024
  34. McGuire, P. E., Andraski, B. J., & Archibald, R. E. (2009). Case study of a full-scale evapotranspiration cover. J. Geotech. and Geoenvir. Engrg., 135, 316–332. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(316)
  35. Melchior, S., Sokollek, V., Berger, K., Vielhaber, B., & Steinert, B. (2010). Results from 18 years of in situ performance testing of landfill cover systems in Germany. J. Environ. Eng., 136, 815–823. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000200
  36. Mijares, R. G., Khire, M. V., & Johnson, T. (2012). Field-scale evaluation of lysimeters versus actual earthen covers. Geotech. Test. J., 35, 31–40. https://doi.org/10.1520/GTJ103577
  37. Mualem, Y. (1976). Hysteretical models for prediction of the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 1248–1254. https://doi.org/10.1029/WR012i006p01248
  38. Ng, C. W. W., Coo, J. L., Chen, Z. K., & Chen, R., (2016). Water infiltration into a new three-layer landfill cover system. J. Environ. Eng., 142, 04016007-1-12. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001074
  39. Ng, C. W. W., & Leung, A. K. (2012). Measurements of drying and wetting permeability functions using a new stress-controllable soil column. J. Geotech. Geoenvironmental Eng., 138, 58–68. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000560
  40. Nyhan, J. W., Shofield, T. G., & Starmer, R. H. (1997). A water balance study of four landfill cover designs varying in slope for semiarid regions. J. Environ. Qual., 26, 1385–1392. https://doi.org/10.2134/jeq1997.00472425002600050026x
  41. Ogorzalek, A. S., Bohnhoff, G. L., Shackelford, C. D., Benson, C. H., & Apiwantragoon, P. (2008). Comparison of field data and water-balance predictions for a capillary barrier cover. J. Geotech. Geoenvironmental Eng., 134, 470–486. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(470)
  42. Parent, S. É., & Cabral, A. (2006). Design of inclined covers with capillary barrier effect. Geotech. Geol. Eng., 24, 689–710. https://doi.org/10.1007/s10706-005-3229-9
  43. Rahardjo, H., Santoso, V. A., Leong, E. C., Ng, Y. S., & Hua, C. J. (2012). Performance of an instrumented slope covered by a capillary barrier system. J. Geotech. Geoenvironmental Eng., 138, 481–490. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000600
  44. Ribeiro, A. G. C., de Azevedo, R. F., Amorim, N. R., & Azevedo, I. D., (2010). Field performance and numerical analysis of cover systems. Electron. J. Geotech. Eng., 15 N, 1337–1352.
  45. Sadek, S., Ghanimeh, S., & El-Fadel, M. (2007). Predicted performance of clay-barrier landfill covers in arid and semi-arid environments. Waste Manag., 27, 572–583. https://doi.org/10.1016/j.wasman.2006.06.008
  46. Scanlon, B. R., Reedy, R. C., Keese, K. E., & Dwyer, S. F. (2005). Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the Southwestern USA’. Vadose Zo. J., 4, 55–71. https://doi.org/10.2136/vzj2005.0055a
  47. Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2018). Performance evaluation of profile probe for continuous monitoring of volumetric water content in multilayered cover system. J. Environ. Eng., 144, 04018078-1-14. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001424
  48. Shaikh, J., Yamsani, S. K., Sekharan, S., & Rakesh, R. R. (2019). Performance evaluation of 5TM sensor for real-time monitoring of volumetric water content in landfill cover system. Advances in Civil Engineering Materials, 8(1), 322–335. https://doi.org/10.1520/ACEM20180091
  49. Šimůnek, J., Šejna, M., & van Genuchten, M. T. (1998). The Hydrus-2D software package for simulating water flow and solute transport in two-dimensional variably saturated media. Igwmc – Tps – 53 Version, 2, 167.
  50. Tan, S. H., Wong, S. W., Chin, D. J., Lee, M. L., Ong, Y. H., Chong, S. Y., & Kassim, A. (2018). Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides. Environ. Earth Sci. 77, 1–13. https://doi.org/10.1007/s12665-018-7770-2
  51. Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: measruements in coaxial transmission lines. Water Resour. Res., 16, 574–582. https://doi.org/10.1029/WR016i003p00574
  52. Touma, J., Vachaud, G., & Parlange, J. Y. (1984). Air and water flow in a sealed, ponded vertical soil column: Experiment and model. Soil Science, 137(3), 181–187.
  53. Travar, I., Andreas, L., Kumpiene, J., & Lagerkvist, A. (2015). Development of drainage water quality from a landfill cover built with secondary construction materials. Waste Manag., 35, 148–158. https://doi.org/10.1016/j.wasman.2014.09.016
  54. Tripathy, S., Al-khyat, S., Cleall, P. J., Baille, W., & Schanz, T. (2016). Soil suction measurement of unsaturated soils with a sensor using fixed-matrix porous ceramic discs. Indian Geotech. J., 46, 252–260. https://doi.org/10.1007/s40098-016-0200-z
  55. Turner, D. A., Beaven, R. P., & Woodman, N. D. (2017). Evaluating landfill aftercare strategies: A life cycle assessment approach. Waste Manag., 63, 417–431. https://doi.org/10.1016/j.wasman.2016.12.005
  56. USEPA. (1989). Requirements for hazardous waste landfill design, construction, and closure. Semin. Publ. EPA, 1–127.
  57. USEPA. (1991). Design and construction of RCRA-CERCLA final covers. Semin. Peblication EPA/625/4, 1–208.
  58. Wang, Z., Feyen, J., Nielsen, D. R., & Van Genuchten, M. T. (1997). Two-phase flow infiltration equations accounting for air entrapment effects. Water Resour. Res., 33, 2759–2767. https://doi.org/10.1029/97WR01708
  59. Wijeyesekera, D. C., O’Connor, K., & Salmon, D. E. (2001). Design and performance of a compacted clay barrier through a landfill. Eng. Geol., 60, 295–305. https://doi.org/10.1016/S0013-7952(00)00110-1
  60. Wosten, J. H. M., Lilly, A., Nemes, A., & Le Bas, C. (1999). Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169–185. https://doi.org/10.1016/S0016-7061(98)00132-3
  61. Wu, H., Wen, Q., Hu, L., Gong, M., & Tang, Z. (2017). Feasibility study on the application of coal gangue as landfill liner material. Waste Manag., 63, 161–171. https://doi.org/10.1016/j.wasman.2017.01.016
  62. Yanful, E. K., Morteza Mousavi, S., & De Souza, L. P. (2006). A numerical study of soil cover performance. J. Environ. Manage., 81, 72–92. https://doi.org/10.1016/j.jenvman.2005.10.006
  63. Yang, H., Rahardjo, H., & Leong, E.-C. (2006). Behavior of Unsaturated Layered Soil Columns during Infiltration. J. Hydrol. Eng., 11, 329–337. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(329)
  64. Yang, H., Rahardjo, H., Leong, E.-C., & Fredlund, D. G. (2004). Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Can. Geotech. J., 41, 908–920. https://doi.org/10.1139/t04-042
  65. Zhan, T. L., Ng, C. W., & Fredlund, D. G. (2007). Field study of rainfall infiltration into a grassed unsaturated expansive soil slope. Can. Geotech. J., 44, 392–408. https://doi.org/10.1139/t07-001
  66. Zhan, T. L. T., Li, H., Jia, G. W., Chen, Y. M., & Fredlund, D. G. (2014). Physical and numerical study of lateral diversion by three-layer inclined capillary barrier covers under humid climatic conditions. Can. Geotech. J., 51, 1438–1448. https://doi.org/10.1139/cgj-2013-0449
  67. Zhang, W., & Sun, C. (2014). Parametric analyses of evapotranspiration landfill covers in humid regions. J. Rock Mech. Geotech. Eng., 6, 356–365. https://doi.org/10.1016/j.jrmge.2013.12.005
  68. Zornberg, J. G., LaFountain, L., & Caldwell, J. A. (2003). Analysis and design of evapotranspirative cover for hazardous waste landfill. J. Geotech. Geoenvironmental Eng., 129, 427–438. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(427)
DOI: https://doi.org/10.2478/ahr-2022-0017 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 129 - 140
Submitted on: May 31, 2022
Accepted on: Oct 5, 2022
Published on: Nov 1, 2022
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Janarul Shaikh, Sudheer Kumar Yamsani, Sanjeet Sahoo, Sreedeep Sekharan, Ravi Ranjan Rakesh, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.