Have a personal or library account? Click to login
Date palm compost versus peat and perlite: a comparative study on germination and plant development of muskmelon and tomato Cover

Date palm compost versus peat and perlite: a comparative study on germination and plant development of muskmelon and tomato

Open Access
|Dec 2021

References

  1. Abdel-Razzak, H. Alkoaik, F., Rashwan, M., Fulleros, R., &Ibrahim, M. (2018). Tomato waste compost as an alternative substrate to peat moss for the production of vegetable seedlings. Journal of Plant Nutrition, 42(3), 287–295. https://doi.org/10.1080/01904167.2018.1554682">https://doi.org/10.1080/01904167.2018.1554682
  2. Afriyie, E. Blankson, W., & Amoabeng, A. (2017). Effect of compost amendment on plant growth and yield of radish (Raphanus sativus L.). International Journal of Experimental Agriculture, 15(2), 1–6. https://doi.org/10.9734/JEAI/2017/30993">https://doi.org/10.9734/JEAI/2017/30993
  3. Alvarado, A. D., Bradford, K. J., & Hewitt, J. D. (1987). Osmotic priming of tomato seeds. Effects on germination, field emergence, seedling growth and fruit yield. Journal of American Society of Horticultural Science, 112(3), 427–432.
  4. Angadi, V., Rai, P. K., & Bara, B. M. (2017). Effect of organic manures and biofertilizers on plant growth, seed yield and seedling characteristics in tomato (Lycopersicon esculentum Mill). Journal of Pharmacognosy and Phytochemistry, 6(3), 807–810.
  5. Bernal, M., Paredes, C., Sanchez-Monedero, M., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource technology, 63(1), 91–99. https://doi.org/10.1016/S0960-8524(97)00084-9">https://doi.org/10.1016/S0960-8524(97)00084-9
  6. Borji, H., Ghahsareh, A. M., & Jafarpour, M. (2010). Effects of the substrate on tomato in soilless culture. Research journal of agriculture and biological sciences, 6(6), 923–927. https://doi.org/10.5897/AJAR11.1148">https://doi.org/10.5897/AJAR11.1148
  7. Bouhouach, H., Marc, C., & Kouki, K. (2009). Compostage et valorisation des déchets oasiens pour l’amélioration des sols et de la productivité. Symposium international AGRUMED 2009. Gestion intégrée des ressources en eau et en sol et durabilité des systèmes de culture en zone Méditerranéenne. Rabat, IAV Hassan II, 15–16 Mai 2009.
  8. Cai, H., Chen, T., Liu, H., Gao, D., Zheng, G., & Zhang, J. (2010). The effect of salinity and porosity of sewage sludge compost on the growth of vegetable seedlings. Scientia Horticulturae, 124(3), 381–386. https://doi.org/10.1016/j.scienta.2010.01.009">https://doi.org/10.1016/j.scienta.2010.01.009
  9. Ch’ng, H. Y., Ahmed, O. H., & AbMajid, N. M. (2014). Biochar and compost influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays L.) in tropical acid soil. Pak. J. Agri. Sci, 51(4), 797–806.
  10. Dayo-Olagbende, G. O., Ayodele, O. J., & Ogunwale, G. I. (2018). Effect of the application of poultry manure and wood ash on maize (Zea mays L.) performance. Journal of Horticulture and Plant Research, 4(1), 11–16. https://doi.org/10.18052/www.scipress.com/JHPR.4.11">https://doi.org/10.18052/www.scipress.com/JHPR.4.11
  11. Farooq, M., Basra, S. M., Hafeez, K., & Ahmad, N. (2005). Thermal hardening: a new seed vigor enhancement tool in rice. J. Integ. Pl. Biol, 47(1), 187–193. https://doi.org/10.1111/j.1744-7909.2005.00031">https://doi.org/10.1111/j.1744-7909.2005.00031
  12. Forster, J. C., Zech, W., & Wurdinger, E. (1993). Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biology and Fertility of Soils, 16(2), 93–99.
  13. Francou, C. (2003). Stabilisation de la matière organique au cours du compostage des déchets urbains: Influence de la nature des déchets et du procédé de compostage-Recherche d’indicateurs pertinents. INAPG (Agro Paris Tech).
  14. Gastol, M., Domagala-Świątkiewicz, I., & Krośniak, M. (2011). Organic versus conventional-a comparative study on quality and nutritional value of fruit and vegetable juices. Biological Agriculture & Horticulture, 27(3–4), 310–319. https://doi.org/10.1080/01448765.2011.648726">https://doi.org/10.1080/01448765.2011.648726
  15. Ghehsareh, A. M., Borji, H., & Jafarpour, M. (2011). Effect of some culture substrates (date palm, peat, cocopeat and perlite) on some growing indices and nutrient element uptake in greenhouse tomato. African Journal of Microbiology Research, 5(12), 1437–1442. https://doi.org/10.5897/AJMR10.786">https://doi.org/10.5897/AJMR10.786
  16. Ghulam, N., Khan, J., Samad, A., & Noor Rahman, B. (2002). The growth of tomato plants in different potting mixes, under greenhouse conditions. Science vision, 8(1), 122–125.
  17. Gill, S., & Al-Shankiti, A. (2015). Priming of Prosopis cineraria (L.) druce and Acacia tortilis (forssk) seeds with fulvic acid extracted from compost to improve germination and seedling vigor. Global J. Environ. Sci. Manage, 1(3), 225–232. https://doi.org/10.7508/gjesm.2015.03.005">https://doi.org/10.7508/gjesm.2015.03.005
  18. Haddad, M. (2007). Effect of three substrates on growth, yield and quality of tomato by the use of geothermal water in the south of Tunisia. Journal of Food, Agriculture & Environment, 5(2), 175–178.
  19. Herrera, F., Castillo, J. E., Chica, A. F., López Bellido, L. (2008). Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants. Bioresource Technology, 99(2), 287–296. https://doi.org/10.1016/j.biortech.2006.12.042">https://doi.org/10.1016/j.biortech.2006.12.042
  20. Islam, M. A., Islam, S., Akter, A., Rahman, M. H., & Nandwani, D. (2017). Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in Mymensingh, Bangladesh. Agriculture, 7(3), 1–7. https://doi.org/10.3390/agriculture7030018">https://doi.org/10.3390/agriculture7030018
  21. International Seed Testing Association (1996). Seed Sci Technol, 24, 155–202.
  22. Khan, A. A., Bibi, H., Ali, Z., Sharif, M., Shah, S.A., Ibadullah, H., Khan, K., Azeem, I., & Ali, S. (2017). Effect of compost and inorganic fertilizers on yield and quality of tomato. Academia Journal of Agricultural Research, 5(10), 287–293. https://doi.org/10.15413/ajar.2017.0135">https://doi.org/10.15413/ajar.2017.0135
  23. Lazcano, C., Arnold, J., Tato, A., Zaller, J.G., & Domínguez, J. (2009). Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Spanish Journal of Agricultural Research, 3(7), 944–951. https://doi.org/10.5424/SJAR/2009074-1107">https://doi.org/10.5424/SJAR/2009074-1107
  24. Martin, C., & Brathwaite, R. (2012). Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture & Horticulture, 28(1), 1–33. https://doi.org/10.1080/01448765.2012.671516">https://doi.org/10.1080/01448765.2012.671516
  25. Medina, E., Paredes, C., Pérez-Murcia, M. D., Bustamante, M. A., & Moral, R. (2009). Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresource Technology, 100(18), 4227–4232. https://doi.org/10.1016/j.biortech.2009.03.055">https://doi.org/10.1016/j.biortech.2009.03.055
  26. Neher, D. A., Weicht, T.R., & Dunseith, P. (2015). Compost for management of weed seeds, pathogen, and early blight on brassicas in organic farmer fields. Agroecology and Sustainable Food Systems, 39(1) 3–18. https://doi.org/10.1080/21683565.2014.884516">https://doi.org/10.1080/21683565.2014.884516
  27. Ofosu-Budu, G. K., Hogarh, J. N., Fobil, G. M., Quaye, A., Danso, S. K. A., & Carboo, D. (2010). Harmonizing procedures for the evaluation of compost maturity in two compost types in Ghana. Resources, conservation and recycling, 54 (3), 205–209. https://doi.org/10.1016/j.resconrec.2009.08.001">https://doi.org/10.1016/j.resconrec.2009.08.001
  28. Olle, M., Ngouajio, M., & Siomos, A. (2012). Vegetable quality and productivity influenced by a growing medium: a review. Žemdirbystė Agriculture, 99(4), 399–408. https://doi.org/10.1016/j.resconrec.2009.08.001/10.635:631.879.4:631.878">https://doi.org/10.1016/j.resconrec.2009.08.001/10.635:631.879.4:631.878
  29. Olojugba, M. R., & Opeyemi, S. (2020). Changes in some Soil properties, Growth and Yield of Tomato as Affected by the Application of Poultry Dropping and NPK Fertilizer on a Humid Alfisol in Southwestern Nigeria. Journal of Agriculture and Sustainability, 13(3), 19.
  30. Radhouani, A., Benyahia, L., Lechaiheb, B., & Ferchichi, A. (2012). Valorization of compost of green wastes. 3rd International workshop on industrial biotechnology (IWIB). Sfax 23 April 2012.
  31. Rahim, M. A., Alam, M. K., Rahman, M. D., Habibur, M. E., Rahmann, J. G., & Aksoy, U. (2014). Effects of organic fertilizers on the seed germination and seedling vigor of tomato. Proceedings of the 4th ISOFAR Scientific Conference. ‘Building Organic Bridges’, at the Organic World Congress 2014, 13–15 Oct., Istanbul, Turkey (eprint ID 23990).
  32. Sanchez-Monedero, M. A., Roig, A., Cegarra, J., & Bernal, M. P. (1999). Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 70(2), 193–201. https://doi.org/10.1016/S0960-8524(99)00018-8">https://doi.org/10.1016/S0960-8524(99)00018-8
  33. Tiquia, S. M., & Tam, N. F. Y. (1998). Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresources Technology, 65 (1–2), 43–49. https://doi.org/10.1016/S0960-8524(98)00024-8">https://doi.org/10.1016/S0960-8524(98)00024-8
  34. Trupiano, D. (2017). The effects of biochar and its combination with compost on lettuce (Lactuca sativa l.) Growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy, 1(2), 1–12. https://doi.org/10.1155/2017/3158207">https://doi.org/10.1155/2017/3158207
  35. Tzortzakis, N. G., & Economakis, C. D. (2005). Shredded maize stems as an alternative substrate medium: effect on growth, flowering and yield of tomato in soilless culture. Journal of Vegetable Science, 11(2), 57–70. https://doi.org/10.1300/J484v11n02_06">https://doi.org/10.1300/J484v11n02_06
  36. Unal, M. (2015). The utilization of spent mushroom compost applied at different rates in tomato (Lycopersicon esculentum Mill.) seedling production. Emir. J. Food Agri, 27(9), 692–697. https://doi.org/10.9755/ejfa.2015-05-206">https://doi.org/10.9755/ejfa.2015-05-206
  37. Verdonck, O., & Gabriëls, R. (1992). Reference method for the determination of physical properties of plant substrates, Acta Horticulturae, 302(1), 169–179. 10.17660/ActaHortic.1992.302.16">http://doi.org/10.17660/ActaHortic.1992.302.16
  38. Zaller, J. G. (2007). Vermicompost in seedling potting media can affect germination, biomass allocation, yields and fruit quality of three tomato varieties. European Journal of Soil Biology, 43(1), 332–336. https://doi.org/10.1016/j.ejsobi.2007.08.020">https://doi.org/10.1016/j.ejsobi.2007.08.020
  39. Zbytniewski, R., & Buszewski, B. (2005). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresource technology, 96(4), 471–478. https://doi.org/10.1016/j.biortech.2004.05.018">https://doi.org/10.1016/j.biortech.2004.05.018
  40. Zucconi, F. A., Monaco, A., & Forte, M. (1985). Phytotoxins during the stabilization of organic matter. Composting of Agricultural and Other Wastes, 73–86.
DOI: https://doi.org/10.2478/ahr-2021-0030 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 96 - 104
Submitted on: Nov 27, 2020
Accepted on: Jun 15, 2021
Published on: Dec 2, 2021
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Afraa Radhouani, Leila Benyehia, Belgacem Lechaiheb, Afef Mahjoubi, Ali Ferchichi, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.