References
- Allison, L. E., & Moodie, C. D. (1965). Carbonate. In A. G. Norman (Ed.), Methods of soil analysis: Part 2 Chemical and microbiological properties (pp. 1379–1396). American Society of Agronomy.
- Arthur, E., Schjønning, P., Moldrup, P., Tuller, M., & de Jonge, L. W. (2013). Density and permeability of a loess soil: long-term organic matter effect and the response to compressive stress. Geoderma, 193–194, 236–245.
- Borrelli, P., Panagos, P., Ballabio, C., Lugato, E., Weynants, M., & Montanarella, L. (2016). Towards a pan-European assessment of land susceptibility to wind erosion. Land Degrad. Dev., 27, 1093–1105.
- Bullock, M. S., Larney, F. J., Izaurralde, R. C., & Feng, Y. (2001). Overwinter changes in wind erodibility of clay loam soils in southern Alberta. Soil Science Society of America Journal, 65, 423–430.
- Chandler, D. G., Saxton, K. E., & Busacca, A. J. (2005). Predicting wind erodibility of loessial soils in the Pacific Northwest by particle sizing. Arid Land Research and Management, 19(1), 13–27.
- Chatterjee, S., Hadi, A. S., & Price, B. (2000). Regression analysis by example. John Wiley and Sons.
- Chepil, W. S. (1942). Measurement of wind erosiveness of soils by dry sieving procedures. Canadian Journal of Agricultural Sciences, 23, 154–160.
- Chepil, W. S. (1950). Properties of soil which influence wind erosion: II. Dry agregate structure as an index of erodibility. Soil Science, 69, 403–414.
- Chepil, W. S. (1952). Improved rotary sieve for measuring state and stability of dry soil structure. Soil Science Society of America Proceedings, 16(2), 113–117.
- Chepil, W. S. (1954). Factors that influence clod structure and erodibility of soil by wind III. Calcium carbonate and decomposed organic matter. Soil Science, 77, 473–480.
- Chepil, W. S. (1962). A compact rotary sieve and the importance of dry sieving in physical soil analysis. Soil Science Society of America Journal, 26(1), 4–6.
- Chepil, W. S., & Basil, F. (1943). A rotary sieve method for determining the size distribution of soil clods. Soil Science, 56(2), 95–100.
- Colazo, J. C., & Buschiazzo, D. E. (2010). Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159, 228–236.
- Diaz-Zorita, M., Grove, J. H., & Perfect, E. (2007). Sieving duration and sieve loading impacts on dry soil fragment size distributions. Soil Tillage Res., 94, 15–20.
- Du, H., Xue, X., Wang, T., & Deng, X. (2015). Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res., 17, 193–204.
- Durner, W., Iden, S. C., & von Unold, G. (2017). The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation. Water Resources Research, 53(1), 33–48. https://doi.org/10.1002/2016WR019830
- Fryrear, D. W., Krammes, C. A., Williamson, D. L., & Zobeck, T. M. (1994). Computing the wind erodible fraction of soils. Journal of Soil and Water Conservation, 49(2), 183–188.
- Guo, Z., Chang, Ch., Wang, R., & Li, R. (2017). Comparison of different methods to determine wind-erodible fraction of soil with rock fragments under different tillage/management. Soil & Tillage Research, 168, 42–49. https://doi.org/10.1016/j.still.2016.12.008
- Kavdir, Y., Özcan, H., Ekinci, H., & Yigini, Y. (2004). The influence of clay content, organic carbon, and land use types on soil aggregate stability and tensile strength. Turkish Journal of Agriculture, 28, 155–162.
- Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis: Part I. Physical and mineralogical methods (2nd ed., pp. 425–442). American Society of Agronomy.
- Kettler, T. A., Doran, J. W., & Gilbert, T. L. (2001). Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Science Society of America Journal, 65, 849–852.
- Kozlovsky Dufková, J. (2010). Laboratory analyses of overwinter processes influence on wind erosion. Meteorological Journal, 13(2–3), 63–67.
- Lackóová, L. (2016). Mapovanie zmien zrnitostných frakcií piesočnatých pôd vplyvom veternej erózie v krajine [Habilitation work]. Slovak University of Agriculture in Nitra.
- Larney, F. J. (2008). Dry-aggregate size distribution. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (pp. 821–832). Taylor & Francis Group.
- Lehrsch, G. A., Sojka, R. E., Carter, D. L., & Jolley, P. M. (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal, 55, 1401–1406.
- Lehrsch, G. A., Sojka, R. E., & Jolley, P. M. (1993). Freezing effects on aggregate stability of soils amended with lime and gypsum. Catena, 24, 115–127.
- López, M. V., De Dios Herrero, J. M., Hevia, G. G., Gracia, R., & Buschiazzo, D. E. (2007). Determination of the wind-erodible fraction of soils using different methodologies. Geoderma, 139, 407–411.
- López, M. V., Gracia, R., & Arrue, J. L. (2001). An evaluation of wind erosion hazard in fallow lands of semiarid Aragon (NE Spain). Journal of Soil and Water Conservation, 56, 212–219.
- Lyles, L., Dickerson. J. D., & Disrud, L. A. (1970). Modified rotary sieve for improved accuracy. Soil Science, 109(3), 207–210.
- Marquez, C. O., Garcia, V. J., Cambardella, C. A., Schultz, R. C., & Isenhart, T. M. (2004). Aggregate-size stability distribution and soil stability. Soil Science Society of America Journal, 68(3), 725–735.
- Mckenzie, N., Coughlan, K., & Creswell, H. (2002). Soil physical measurement and interpretation for land evaluation. CSIRO Publishing.
- METERGROUP (2020, December 5). Automated particle size analysis PARIO©. https://www.metergroup.com/environment/products/pario/
- Paetz, A., & Wilke, B. M. (2005). Soil sampling and storage. In R. Margesin, & F. Schinner (Eds.), Manual for soil analysis: Monitoring and assessing soil bioremediation (pp. 1–46). Springer-Verlag.
- Pansu, M., Gautheyrou, J., & Loyer, J. Y. (2001). Soil analysis: Sampling, instrumentation and quality control. A. A. Balkema Publishers.
- Pasák, V. (1970). Wind erosion on soils. Research Institute for Soil and Water Conservation.
- RISWC. (2020, December 5). Geoportál SOWAC GIS. https://geoportal.vumop.cz/
- Saygin, S. D., Cornelis, W. M., Erpula, G., & Gabriels, D. (2012). Comparison of different aggregate stability approaches for loamy sand soils. Applied Soil Ecology, 54, 1–6.
- Šimanský, V., Bajčan, D., & Ducsay, L. (2013). The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. Catena, 101, 108–113.
- Skidmore, E. L., & Layton, J. B. (1992). Dry soil aggregate stability as influenced by selected soil properties. Soil Science Society of America Journal, 56(2), 557–561.
- Skidmore, E. L. (1994). Wind erosion. In R. Lal (Ed.), Soil erosion research methods (pp. 265–294). CRC Press.
- Tatarko, J. (2001). Soil aggregation and wind erosion: processes and measurements. Annals of Arid Zone, 40(3), 251–263.
- Toogood, J. A. (1978). Relation of aggregate stability to properties of Alberta soils. In W. W. Emerson, R. D. Bond, & A. R. Dexter (Eds.), Modification of soil structure (pp. 211–215). Wiley.
- Visser, S. M., Sterk, G., & Karssenberg, D. (2005). Wind erosion modelling in a Sahelian environment. Environ. Modell. Software, 20, 69–84.
- Walkley, A., & Black, T.A. (1934). An examination of the Degtjareff methods for determining of soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37, 29–38.
- Webb, N. P., & Strong, C. L. (2011). Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Res., 3, 165–179.
- Woodruff, N. P., & Siddoway, F. H. (1965). A wind erosion equation. Soil Science, 29(5), 602–608.
- Zachar, D. (1982). Soil Erosion. Elsevier Science.
- Zobeck, T. M., Popham, T. W., Skidmore, E. L., Lamb, J. A., Merill, S. D., Lindstrom, M. J., Mokma, D. L., & Yoder, R. E. (2003). Aggregate-mean diameter and wind-erodible soil predictions using dry aggregate-size distribution. Soil Science Society of America Journal, 67, 425–436.