Have a personal or library account? Click to login
Does Biochar Influence Soil CO2 Emission Four Years After Its Application to Soil? Cover

Does Biochar Influence Soil CO2 Emission Four Years After Its Application to Soil?

By: Tatijana Kotuš and  Ján Horák  
Open Access
|May 2021

References

  1. Agehara, S., Warncke, D. D. (2005). Soil alternate wetting and drying pure and temperature effects on nitrogen release from organic nitrogen sources. Soil Science Society of America Journal, 69, 1855.10.2136/sssaj2004.0361
  2. Atarashi-Andoh, M., Koarashi, J., Ishizuka, S., Hirai, K. (2012). Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures. Agricultural and Forest Meteorology, 152, 149–158.10.1016/j.agrformet.2011.09.015
  3. Bruun, E. W., Hauggaard-Nielsen, H., Ibrahim, N., Egsgaard, H., Ambus, P., Jensen, P. A., Dam-Johansen, K. (2011). Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass & Bioenergy, 35, 1182–1189.10.1016/j.biombioe.2010.12.008
  4. Case, S. D. C., McNamara, N. P., Reay, D. S., Whitaker, J. (2012). The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil – The role of soil aeration. Soil Biology & Biochemistry, 51, 125–134.10.1016/j.soilbio.2012.03.017
  5. El-Naggar, A. H., Usman, A. R. A., Al-Omran, A., Yong, S. O., Ahmad, M., Al-Wabel, M. I. (2015). Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere, 138, 67–73.10.1016/j.chemosphere.2015.05.052
  6. Follett, R. F. (1997). CRP and microbial biomass Dynamics in temperate climates. In Lal, R. (ed.). Management of carbon sequestration in soil. Boca Ration: CRP Press (305–322).
  7. Forrester, J.A., Mladenoff, J.D., Gower, S.T., Stoffe. J.L. (2012). Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. Forest Ecology and Management, 265, 124–132.10.1016/j.foreco.2011.10.038
  8. Ge, X. G., Cao, Y. H., Zhou, B., Wang, X. M., Yang, Z. Y., Li, M. H. (2019). Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations. Applied Soil Ecology, 142, 155–165.10.1016/j.apsoil.2019.04.021
  9. Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., Zech, W. (2000). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31, 669–678.10.1016/S0146-6380(00)00044-9
  10. Gregorich, E. G., Greek, K. J., Anderson, D. W., Liang, B. C. (1998). Carbon distribution and losses: erosion and deposition effects. Soil and Tillage Research, 47(3–4), 291.10.1016/S0167-1987(98)00117-2
  11. Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., Balashov, E. (2020). Effects of biochar combined with N-fertilization on soil CO2 emissions, crop yields and relationships with soil properties. Polish Journal of Environmental Studies, 29(5), 1–13; doi: 10.15244/pjoes/11765610.15244/pjoes/117656
  12. Hua, L., Wu, W., Liu, Y., McBride, M. B., Chen, Y. (2009). Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environmental Science and Pollution Research, 16, 1–9.10.1007/s11356-008-0041-018751746
  13. Chen, S. T., Huang, Y., Zou, J. W., Shen, Q. R., Hu, Z. H., Qin, Y. M., Chen, H. S, Pan, G. X. (2010). Modeling interannual variability of global soil respiration from climate and soil properties. Agricultural and Forest Meteorology, 150(4), 590–605.10.1016/j.agrformet.2010.02.004
  14. Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G. J., Folberth, G., Schlamadinger, B., Hutjes, R. W. A., Ceulemans, R., Schulze, E. D., Valentini, R., Dolman, H. (2003). Europe’s bio-sphere absorbs 7–12% of anthrogogenic carbon emissions. Science, 300, 1538–1542.10.1126/science.108359212764201
  15. Juma, N. G. (1999). Pedosphere and its dynamics. Edmonton, Canada: Salman Production Ins. (335 p.).
  16. IPCC. (2007). Climate change: Synthesis report. Summary for Policymakers. Intergovernmental Panel on Climate Change.
  17. Kim, D. G., Vargas, R., Bond-Lamberty, B., Turetsky, M. (2012). Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences, 9(7), 2459–2483.10.5194/bg-9-2459-2012
  18. Lal, R. (2001). Soil carbon sequestration and climate change. Washington, DC: Senate Hearing, Science and Technical Sub-Committee.
  19. Lee, J., Six, J., King, A. P., Van Kessel, C., Rolston, D. (2006). Tillage and field scale controls on greenhouse gas emission. Journal of Environmental Quality, 35(1), 725.10.2134/jeq2005.033716585613
  20. Lehmann, J., Rilling, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., Crowley, D. (2011). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43, 1812–1836.10.1016/j.soilbio.2011.04.022
  21. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O‘Neill, B., Skjemstad, J. O., Thies, J., Luizao, F. J., Petersen, J., Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730.10.2136/sssaj2005.0383
  22. Major, J., Steiner, C., DiTommaso, A., Falcǎo, N. P. S., Lenmann, J. (2005). Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: compost, fertilizer, manure and charcoal applications. Weed Biology and Management, 5, 69–76.10.1111/j.1445-6664.2005.00159.x
  23. McHenry, M. P. (2009). Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agriculture, Ecosystem & Environment, 129, 1–7.10.1016/j.agee.2008.08.006
  24. Melillo, J. M., Morrisseau, S. (2002). Soil warming and carbon – cycle feedbacks to the climate system. Science, 298, 2173–2176.10.1126/science.107415312481133
  25. Parkin, T. B., Kaspar, T. C. (2003). Temperature controls on diurnal carbon dioxide flux: Implication for estimating soil carbon loss. Soil Science Society of America Journal, 67, 1763–1772.10.2136/sssaj2003.1763
  26. Pascual, J. A., Hernandez, T., Garcia, C., Ayusot, M. (1998). Carbon mineralization in an arid soil amended with organic wastes of varying degrees of stability. Communication in Soil Science and Plant Analysis, 29, 835.10.1080/00103629809369989
  27. Rey, A., Pegoraro, E., Oyonatre, C., Were, A., Escribano, P., Raimundo, J. (2011). Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semiarid ecosystem in the SE of Spain. Soil Biology and Biochemistry, 43, 393–403.10.1016/j.soilbio.2010.11.007
  28. Renner, R. (2007). Rethinking biochar. Environmental Science & Technology, 41, 5932–5933.10.1021/es072609717937262
  29. Robertson, G. P., Grace, P. R. (2004). Greenhouse gas fluxes in tropical and temperate agriculture: The need for a full-cost accounting of global warming potentials. Environment, Development and Sustainability, 6, 51–63.10.1023/B:ENVI.0000003629.32997.9e
  30. Rondon, M., Ramirez, J. A., Lehmann, J. (2005). Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In Proceedings of the 3rd. USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, USA (pp. 21–24, p. 208).
  31. Shen, Y., Zhu, L., Cheng, H., Yue, Sh., Li, Sh. (2017). Effects of biochar application on CO2 emissions from a cultivated soil under semiarid climate conditions in Northwest China. Sustainability, 9, 1482. Doi:10.3390/su908148210.3390/su9081482
  32. Shindo, H. (1991). Elementary compostion, humus composition and decomposition in soil of charred grassland plants. Soil Science and Plant Nutrition, 37, 651–657.10.1080/00380768.1991.10416933
  33. Sugihara, S., Funakawa, S., Kılasara, M., Kosakı, T. (2012). Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biology and Biochemistry, 46, 1–9.10.1016/j.soilbio.2011.10.013
  34. Spokas, K. A., Reicosky, D. C. (2009). Impacts of sixteen different biochars on soil greenhouse gas production. Annals of Environmental Science and Toxicology, 3, 179–193.
  35. Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., De Macêdo, J. L. V., Blum, W. E. H., Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil, 291, 275–290.10.1007/s11104-007-9193-9
  36. Wang, H., Lin, K., Hou, Z., Richardson, B., Gan, J. (2010). Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. Journal of Soils and Sediments, 10, 283–289.10.1007/s11368-009-0111-z
  37. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56. Doi:10.1038/ncomms105310.1038/ncomms1053296445720975722
  38. Xu, X., Luo, X. (2012). Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma, 170, 118–126.10.1016/j.geoderma.2011.11.016
  39. Yanai, Y., Toyota. K., Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition, 53, 181–188.10.1111/j.1747-0765.2007.00123.x
  40. Yufang, S., Lixia, Z., Hongyan, Ch., Shanchao, Y., Shinqing, L. (2017). Effects of biochar application on CO2 emissions from cultivated soil under semiarid climate conditions in Northwest China. Sustainability, 9, 1482. Doi: 10.3390/su908148210.3390/su9081482
  41. Zahra, S. I., Abbas, F., Ishaq, W., Ibrahim, M., Hammad, H. M., Akram, B., Salik, M. R. (2016). Carbon sequestration potential of soils under maize production ın ırrigated agriculture of The Punjab province of Pakistan. Journal of Animal and Plant Science, 26(3), 706–715.
  42. Zhang, H., Lin, K., Wang, H., Gan, J. (2010). Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environmental Pollution, 158, 2821–2825.10.1016/j.envpol.2010.06.02520638165
DOI: https://doi.org/10.2478/ahr-2021-0016 | Journal eISSN: 1338-5259 | Journal ISSN: 1335-2563
Language: English
Page range: 109 - 116
Published on: May 21, 2021
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Tatijana Kotuš, Ján Horák, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.