Have a personal or library account? Click to login
A narrative review on tumor microenvironment in malignant tumors Cover

A narrative review on tumor microenvironment in malignant tumors

Open Access
|Apr 2025

References

  1. Weinberg RATboc. The biology of cancer. Garland Science. 2007;725:795.
  2. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discovery. 2022;12(1):31–46.
  3. Hanahan D, Weinberg RAJc. The hallmarks of cancer. 2000;100(1):57–70.
  4. Baeriswyl V, Christofori G. The angiogenic switch in carcinogenesis. Seminars in Cancer Biology; 2009: Elsevier.
  5. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.
  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
  7. Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501(7467):346–54.
  8. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Medicine. 2015;13:45.
  9. Iwahori K. Cytotoxic CD8(+) Lymphocytes in the tumor microenvironment. Advances in Experimental Medicine and Biology. 2020;1224:53–62.
  10. Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Molecular Cancer. 2020;19(1):1–23.
  11. Cords, L., de Souza, N., Bodenmiller, B. (2024). Classifying cancer-associated fibroblasts—The good, the bad, and the target. Cancer Cell, 42(9), 1480–1485.
  12. Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. American Journal of Cancer Research. 2011;1(4):482–97.
  13. Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. The Journal of Experimental Medicine. 2014;211(8):1503–23. Arneth B. Tumor Microenvironment. 2020;56(1):15.
  14. Li B, Wang JH. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. Journal of Tissue Viability. 2011;20(4):108–20.
  15. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PloS One. 2009;4(4):e4992.
  16. Mbeunkui F, Johann DJ, Jr. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemotherapy and Pharmacology. 2009;63(4):571–82.
  17. Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell & Developmental Biology. 2010;21(1):33–9.
  18. Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. 2014;5.
  19. Fan QM, Jing YY, Yu GF, Kou XR, Ye F, Gao L, Li R, Zhao QD, Yang Y, Lu ZH, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Letters. 2014;352(2):160–8.
  20. Fang H, Declerck YA. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Research. 2013;73(16):4965–77.
  21. Angell H, Galon J. From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Current Opinion in Immunology. 2013;25(2):261–7.
  22. Hivroz C, Chemin K, Tourret M, Bohineust A. Crosstalk between T lymphocytes and dendritic cells. Critical Reviews in Immunology. 2012;32(2):139–55.
  23. O’Garra A, Murphy K. Role of cytokines in determining T-lymphocyte function. Current Opinion in Immunology. 1994;6(3):458–66.
  24. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer. 2012;12(4):298–306.
  25. Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, Roy S. Monocyte and macrophage plasticity in tissue repair and regeneration. The American Journal of Pathology. 2015;185(10):2596–606.
  26. Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. Journal of Leukocyte Biology. 2004;76(3):509–13.
  27. Li N, Qin J, Lan L, Zhang H, Liu F, Wu Z, Ni H, Wang Y. PTEN inhibits macrophage polarization from M1 to M2 through CCL2 and VEGF-A reduction and NHERF-1 synergism. Cancer Biology & Therapy. 2015;16(2):297–306.
  28. Derlindati E, Dei Cas A, Montanini B, Spigoni V, Curella V, Aldigeri R, Ardigò D, Zavaroni I, Bonadonna RC. Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation? PloS One. 2015;10(3):e0119751.
  29. Zhao H, Zhang X, Chen X, Li Y, Ke Z, Tang T, Chai H, Guo AM, Chen H, Yang, J. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicology and Applied Pharmacology. 2014;279(3):311–21.
  30. Josephs DH, Bax HJ, Karagiannis SN. Tumour-associated macrophage polarisation and re-education with immunotherapy. Frontiers in Bioscience (Elite edition). 2015;7(2):293–308.
  31. Mira E, Carmona-Rodríguez L, Tardáguila M, Azcoitia I, González-Martín A, Almonacid L, Casas J, Fabriás G, Mañes S. A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors. Oncotarget. 2013;4(12):2288–301.
  32. Hu W, Li X, Zhang C, Yang Y, Jiang J, Wu C. Tumor-associated macrophages in cancers. Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2016;18(3):251–8.
  33. Shand FH, Ueha S, Otsuji M, Koid SS, Shichino S, Tsukui T, Kosugi-Kanaya M, Abe J, Tomura M, Ziogas J, et al. Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(21):7771–6.
  34. Belgiovine C, D’Incalci M, Allavena P, Frapolli R. Tumor-associated macrophages and anti-tumor therapies: complex links. Cellular and molecular life sciences : CMLS. 2016;73(13):2411–24.
  35. Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clinical and Experimental Immunology. 2012;167(2):195–205.
  36. Pottier C, Wheatherspoon A, Roncarati P, Longuespée R, Herfs M, Duray A, Delvenne P, Quatresooz P. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Review of Anticancer Therapy. 2015;15(8):943–54.
  37. Watnick RS. The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harbor Perspectives in Medicine. 2012;2(12):a006676.
  38. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil, GS, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine. 2011;17(11):1498–503.
  39. Vona-Davis L, Rose DP. Angiogenesis, adipokines and breast cancer. Cytokine & Growth Factor Reviews. 2009;20(3):193–201.
  40. Zhang Y, Daquinag AC, Amaya-Manzanares F, Sirin O, Tseng C, Kolonin MG. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Research. 2012;72(20):5198–208.
  41. Lee E, Pandey NB, Popel AS. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Reviews in Molecular Medicine. 2015;17:e3.
  42. Cao Y. Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nature Reviews Cancer. 2005;5(9):735–43.
  43. Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Current Opinion in Pharmacology. 2017;35:40–7.
  44. Ozbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. The evolution of extracellular matrix. Molecular Biology of the Cell. 2010;21(24):4300–5.
  45. Xian X, Gopal S, Couchman JR. Syndecans as receptors and organizers of the extracellular matrix. Cell and Tissue Research. 2010;339(1):31–46.
  46. Weigelt B, Bissell MJ. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Seminars in Cancer Biology. 2008;18(5):311–21.
  47. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. The Journal of Cell Biology. 2012;196(4):395–406.
  48. Morrison VL, Uotila LM, Llort Asens M, Savinko T, Fagerholm SC. Optimal T cell activation and B cell antibody responses in vivo require the interaction between leukocyte function-associated antigen-1 and kindlin-3. Journal of Immunology (Baltimore, Md: 1950). 2015;195(1):105–15.
  49. Harjunpää H, Llort Asens M, Guenther C, Fagerholm SCJFii. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. 2019;10:1078.
  50. Rai A, Fang H, Claridge B, Simpson RJ, Greening DW. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. Journal of Extracellular Vesicles. 2021;10(13):e12164.
  51. Walker C, Mojares E, Del Río Hernández A. Role of extracellular matrix in development and cancer progression. International Journal of Molecular Sciences. 2018;19(10).
  52. McAndrews KM, McGrail DJ, Ravikumar N, Dawson MR. Mesenchymal stem cells induce directional migration of invasive breast cancer cells through TGF-β. Scientific Reports. 2015;5(1):16941.
  53. Hynes RO. The extracellular matrix: Not just pretty fibrils. Science (New York, NY). 2009;326(5957):1216–9.
  54. Yi, M., Li, T., Niu, M. (2024). Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduction and Targeted Therapy. 9, 176.
  55. Tartour E, Fridman WH. Cytokines and cancer. International Reviews of Immunology. 1998;16(5–6):683–704.
  56. Balkwill F. Cancer and the chemokine network. Nature Reviews Cancer. 2004;4(7):540–50.
  57. Chow MT, Luster AD. Chemokines in cancer. Cancer Immunology Research. 2014;2(12):1125–31.
  58. Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes & Diseases. 2021;8(5):655–61.
  59. Vaupel P, Mayer A. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Advances in Experimental Medicine and Biology. 2014;812:19–24.
  60. Hulikova A, Swietach P. Rapid CO2 permeation across biological membranes: implications for CO2 venting from tissue. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2014;28(7):2762–74.
  61. Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. Journal of cellular and molecular medicine. 2010;14(4):771–94.
  62. Semenza GL. Targeting HIF-1 for cancer therapy. Nature Reviews Cancer. 2003;3(10):721–32.
  63. Kunz M, Ibrahim SM. Molecular responses to hypoxia in tumor cells. Molecular Cancer. 2003;2:23.
  64. Elinav E, Garrett WS, Trinchieri G, Wargo J. The cancer microbiome. Nature Reviews Cancer. 2019;19(7):371–6.
  65. Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell Communication Signaling. 2011;9(1):1–8.
  66. Brábek J, Mierke CT, Rösel D, Veselý P, Fabry B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Communication and Signaling: CCS. 2010;8:22.
  67. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. The Journal of Cell Biology. 2010;188(1):11–9.
  68. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.
  69. He X, Lee B, Jiang Y. Cell-ECM interactions in tumor invasion. Advances in Experimental Medicine and Biology. 2016;936:73–91.
  70. Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annual Review of Physiology. 2020;82:103–26.
  71. Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C, Rivoltini L. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology. 2017;43:74–89.
  72. Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan LM, Tan YX, Ji SP, Liang YM, Gong F. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. Journal of Experimental & Clinical Cancer Research: CR. 2017;36(1):130.
  73. Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends in Cell Biology. 2017;27(11):863–75.
  74. Yu J, Zhang Q, Wang M, Liang S, Huang H, Xie L, Cui C, Yu J. Comprehensive analysis of tumor mutation burden and immune microenvironment in gastric cancer. Bioscience Reports. 2021; 41(2).
  75. Zhu Y, Zhao Y, Cao Z, Chen Z, Pan W. Identification of three immune subtypes characterized by distinct tumor immune microenvironment and therapeutic response in stomach adenocarcinoma. Gene. 2022;818:146177.
  76. Wang Y, Zhu GQ, Tian D, Zhou CW, Li N, Feng Y, Zeng MS. Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer. 2022;22(1):316.
  77. Kim EY, Abdul-Ghafar J, Chong Y, Yim K. Calculated tumor-associated neutrophils are associated with the tumor-stroma ratio and predict a poor prognosis in advanced gastric cancer. Biomedicines. 2022;10(3).
  78. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular Cancer. 2021;20(1):131.
  79. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM. Macrophages in tumor microenvironments and the progression of tumors. Clinical & Developmental Immunology. 2012;2012:948098.
  80. Okikawa S, Morine Y, Saito Y, Yamada S, Tokuda K, Teraoku H, Miyazaki K, Yamashita S, Ikemoto T, Imura S, et al. Inhibition of the VEGF signaling pathway attenuates tumor-associated macrophage activity in liver cancer. Oncology Reports. 2022;47(4).
  81. Ao T, Mochizuki S, Kajiwara Y, Yonemura K, Shiraishi T, Nagata K, Shinto E, Okamoto K, Nearchou IP, Shimazaki H, et al. Cancer-associated fibroblasts at the unfavorable desmoplastic stroma promote colorectal cancer aggressiveness: Potential role of ADAM9. International Journal of Cancer. 2022;150(10):1706–21.
  82. Ugai T, Väyrynen JP, Lau MC, Borowsky J, Akimoto N, Väyrynen SA, Zhao M, Zhong R, Haruki K, Costa AD, et al. Immune cell profiles in the tumor microenvironment of early-onset, intermediate-onset, and later-onset colorectal cancer. Cancer Immunology, Immunotherapy: CII. 2022;71(4):933–42.
  83. Ren C, Li J, Zhou Y, Zhang S, Wang Q. Typical tumor immune microenvironment status determine prognosis in lung adenocarcinoma. Translational Oncology. 2022;18:101367.
  84. Sumitomo R, Huang CL, Fujita M, Cho H, Date H. Differential expression of PD-L1 and PD-L2 is associated with the tumor microenvironment of TILs and M2 TAMs and tumor differentiation in non-small cell lung cancer. Oncology Reports. 2022;47(4).
  85. Liu Y, Wang T, Fang Z, Kong J, Liu J. Analysis of N6-methyladenosine-related lncRNAs in the tumor immune microenvironment and their prognostic role in pancreatic cancer. J Cancer Res Clin Oncol. 2022;148(7):1613–1626.
  86. Li TJ, Jin KZ, Li H, Ye LY, Li PC, Jiang B, Lin X, Liao ZY, Zhang HR, Shi SM, et al. SIGLEC15 amplifies immunosuppressive properties of tumor-associated macrophages in pancreatic cancer. Cancer Letters. 2022;530:142–55.
  87. Hornburg M, Desbois M, Lu S, Guan Y, Lo AA, Kaufman S, Elrod A, Lotstein A, DesRochers TM, Munoz-Rodriguez JL, et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell. 2021;39(7):928–44.e6.
  88. Najem H, Ott M, Kassab C, Rao A, Rao G, Marisetty A, Sonabend AM, Horbinski C, Verhaak R, Shankar A, et al. Central nervous system immune interactome is a function of cancer lineage, tumor microenvironment, and STAT3 expression. JCI Insight. 2022 Sep;7(9):e157612.
  89. Wang QW, Bao ZS, Jiang T, Zhu YJ. Tumor microenvironment is associated with clinical and genetic properties of diffuse gliomas and predicts overall survival. Cancer Immunology, Immunotherapy: CII. 2022;71(4):953–66.
  90. Teng YHF, Quah HS, Suteja L, Dias JML, Mupo A, Bashford-Rogers RJM, Vassiliou GS, Chua MLK, Tan DSW, Tan DSW, et al. Analysis of T cell receptor clonotypes in tumor microenvironment identifies shared cancer-type-specific signatures. Cancer Immunology, Immunotherapy: CII. 2022;71(4):989–98.
  91. Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, Rae Z, Hernandez JM, Davis JL, Martin SP, et al. Tumor cell biodiversity drives microenvironmental reprogramming in liver cancer. 2019;36(4):418–30. e6.
  92. Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kückelhaus J, Vollmer L, Goeldner JM, Behringer SP, Scherer F, et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nature Communications. 2022;13(1):925.
  93. Du Y, Shi J, Wang J, Xun Z, Yu Z, Sun H, Bao R, Zheng J, Li Z, Ye Y. Integration of pan-cancer single-cell and spatial transcriptomics reveals stromal cell features and therapeutic targets in tumor microenvironment. Cancer Research. 2024;84(2):192–210.
  94. Zha C, Meng X, Li L, Mi S, Qian D, Li Z, Wu P, Hu S, Zhao S, Cai J, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biology & Medicine. 2020;17(1):154–68.
  95. Seo MK, Kang H, Kim S. Tumor microenvironment-aware, single-transcriptome prediction of microsatellite instability in colorectal cancer using meta-analysis. Scientific Reports. 2022;12(1):6283.
  96. He C, Wang D, Shukla SK, Hu T, Thakur R, Fu X, King RJ, Kollala SS, Attri KS, Murthy D, et al. Vitamin B6 competition in the tumor microenvironment hampers antitumor functions of NK cells. Cancer Discovery. 2024;14(1):176–93.
  97. Chen X, Yuan Q, Liu J, Xia S, Shi X, Su Y, Wang Z, Li S, Shang D. Comprehensive characterization of extracellular matrix-related genes in PAAD identified a novel prognostic panel related to clinical outcomes and immune microenvironment: A silico analysis with in vivo and vitro validation. Frontiers in Immunology. 2022;13:985911.
  98. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacology & Therapeutics. 2021;221:107753.
  99. Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A, Majidzadeh-A K. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. Journal of Controlled Release. 2021;334:164–77.
Language: English
Page range: 50 - 60
Submitted on: Jul 15, 2024
|
Accepted on: Feb 19, 2025
|
Published on: Apr 17, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Zuleyha Doganyigit, Ece Eroglu, Aslı Okan, Seher Yilmaz, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.