References
- D’Orazio JA, Marsch A, Lagrew J, Veith WB. Skin pigmentation and melanoma risk In: Advances in malignant melanoma – clinical and research perspectives. InTech 2011: 39–68.
- Simon JD, Peles D, Wakamatsu K, Ito S. Current challenges in understanding melanogenesis: Bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res. 2009; 22: 563–579.
- Wakamatsu K, Zippin JH, Ito S. Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell Melanoma Res. 2021; 34: 730–747.
- Brenner MV, Hearing J. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008; 84: 539–549.
- Ito S, Wakamatsu K, Sarna T. Photodegradation of eumelanin and pheomelanin and its pathophysiological implications. Photochem Photobiol. 2018; 94: 409–420.
- Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006; 19: 572–594.
- Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, Guerrero CR, Lennerz J K, Mihm MC, Wargo JA, et al. A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background. Nature. 2012; 491: 449–453.
- Morgan AM, Lo J, Fisher DE. How does pheomelanin synthesis contribute to melanomagenesis? Two distinct mechanisms could explain the carcinogenicity of pheomelanin synthesis. Bioessays. 2013; 35: 672–676.
- Napolitano A, Panzella L, Monfrecola G, d’Ischia M. Pheomelanin-induced oxidative stress: Bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res. 2014; 27: 721–733.
- Premi S. Role of melanin chemiexcitation in melanoma progression and drug resistance. Front Oncol. 2020; 10: 1305.
- Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, Bechara EJH, Halaban R, Douki T, Brash DE. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science. 2015; 34:, 842–847.
- Salopek TG, Yamada K, Ito S, Jimbow K. Dysplastic melanocytic nevi contain high levels of pheomelanin: Quantitative comparison of pheomelanin/eumelanin levels between normal skin, common nevi, and dysplastic nevi. Pigment Cell Res. 1991; 4: 172–179.
- Pavel S, Van Nieuwpoort F, Van der Meulen H, Out C, Pizinger K, Cetkovska P, Smit NP, Koerten HK. Disturbed melanin synthesis and chronic oxidative stress in dysplastic naevi. Eur J Cancer. 2004; 40: 1423–1430.
- Dzierżęga-Lęcznar A, Kurkiewicz S, Stępień K. Detection and quantitation of a pheomelanin component in melanin pigments using pyrolysis-gas chromatography/tandem mass spectrometry system with multiple reaction monitoring mode. J Mass Spectrom. 2012; 47: 242–245.
- Chodurek E, Dzierżęga-Lęcznar A, Kurkiewicz S, Stępień K. Exposure to valproic acid and 5,7-dimethoxycoumarin induces pheomelano-genesis in the human melanoma G-361 cells, as demonstrated by Py-GC/MS/MS study. J Anal Appl Pyrolysis. 2013; 104: 567–572.
- Dzierżęga-Lęcznar A, Kurkiewicz S, Tam I, Marek Ł, Stępień K. Pheomelanin content of cultured human melanocytes from lightly and darkly pigmented skin: A pyrolysis-gas chromatography/tandem mass spectrometry study. J Anal Appl Pyrolysis. 2017; 124: 349–354.
- Del Bino S, Ito S, Sok J, Nakanishi Y, Bastien P, Wakamatsu K, Bernerd F. Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio. Pigment Cell Melanoma Res. 2015; 28: 707–717.
- Lerche CM. Olsen P. Nissen CV, Philipsen PA, Wulf HC. A novel LC-MS/MS method to quantify eumelanin and pheomelanin and their relation to UVR sensitivity – a study on human skin biopsies. Pigment Cell Melanoma Res. 2019; 32: 809–816.