References
- Bolton CF. Neuromuscular manifestations of critical illness. Muscle Nerve. 2005; 32: 140–163.
- Valentine RJ, Jefferson MA, Kohut ML, Eo H. Imoxin attenuates LPS-induced inflammation and MuRF1 expression in mouse skeletal muscle. Physiol. Rep. 2018; 6: e13941.
- Nedrebø T, Reed RK. Different serotypes of endotoxin (lipopolysaccha-ride) cause different increases in albumin extravasation in rats. Shock. 2002; 18: 138–141.
- Nemzek JA, Hugunin KM, Opp MR. Modeling sepsis in the laboratory: Merging sound science with animal well-being. Comp. Med. 2008; 58: 120–128.
- Koyama S, Sato E, Nomura H, Kubo K, Miura M, Yamashita T, Nagai S, Izumi T. The potential of various lipopolysaccharides to release IL-8 and G-CSF. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000; 278: L658–L666.
- Lang CH, Frost RA, Jefferson LS, Kimball SR, Vary TC. Endotoxin-induced decrease in muscle protein synthesis is associated with changes in eIF2B, eIF4E, and IGF-I. Am. J. Physiol. Endocrinol. Metab. 2000; 278: E1133–E1143.
- Roth J, De Souza GE. Fever induction pathways: Evidence from responses to systemic or local cytokine formation. Braz. J. Med. Biol. Res. 2001; 34: 301–314.
- Sagy M, Al-Qaqaa Y, Kim P. Definitions and pathophysiology of sepsis. Curr. Probl. Pediatr. Adolesc. Health Care. 2013; 43: 260–263.
- Langhans C, Weber-Carstens S, Schmidt F, Hamati J, Kny M, Zhu X, Wollersheim T, Koch S, Krebs M, Schulz H, et al. Inflammation-induced acute phase response in skeletal muscle and critical illness myopathy. PLoS. One. 2014; 9: e92048.
- Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011; 21: 103–115.
- Chen Y, Zhou Z, Min W. Mitochondria, oxidative stress and innate immunity. Front Physiol. 2018; 9: 1487.
- Kuwahara H, Horie S, Ishikawa S, Tsuda C, Kawakami S, Noda Y, Kaneko T, Tahara S, Tachibana T, Okabe M, et al. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free. Radic. Biol. Med. 2010; 48: 1252–1262.
- Maestraggi Q, Lebas B, Clere-Jehl R, Ludes PO, Chamaraux-Tran TN, Schneider F, Diemunsch P, Geny B, Pottecher J. Skeletal muscle and lymphocyte mitochondrial dysfunctions in septic shock trigger ICU-acquired weakness and sepsis-induced immunoparalysis. Biomed. Res. Int. 2017; 2017: 7897325.
- Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H. Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007; 293: R1159–R1168.
- Meyer M, Pahl HL, Baeuerle PA. Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem. Biol. Interact. 1994; 91: 91–100.
- Sundaram K, Panneerselvam K. Oxidative stress and DNA single strand breaks in skeletal muscle of aged rats: Role of carnitine and lipoic acid. Biogerontology. 2006; 7: 111–118.
- Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signaling: Role in skeletal muscle atrophy. Adv. Exp. Med. Biol. 2018; 1088: 267–279.
- Zhang Q, Pi J, Woods CG, Andersen ME. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol. Appl. Pharmacol. 2010; 244: 84–97.
- Seifar F, Khalili M, Khaledyan H., Moghadam SA, Izadi A, Azimi A, Shakouri SK. α-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review. Nutr. Neurosci. 2019; 22: 306–316.
- Malińska D, Winiarska K. Kwas liponowy - charakterystyka i zastosowanie w terapii. Postep Hig. Med. Dosw. 2005; 59: 535–543.
- Caldow MK, Ham DJ, Chee A, Trieu J, Naim T, Stapleton DI, Swiderski KG, Lynch GS, Koopman R. Muscle-specific deletion of SOCS3 does not reduce the anabolic response to leucine in a mouse model of acute inflammation. Cytokine. 2017; 96: 274–278.
- Li YP, Atkins CM, Sweatt JD, Reid MB. Mitochondria mediate tumor necrosis factor-α/NF-κB signaling in skeletal muscle myotubes. Antoxid. Redox. Signal. 1999; 1: 97–104.
- Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Neutral sphingomyelinase 2 is required for cytokine-induced skeletal muscle calpain activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015; 309: L614–L624.
- Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, Möbius-Winkler S, Schubert A, Schuler G, Hambrecht R. Antioxidative effects of exercise training in patients with chronic heart failure: Increase in radical scavenger enzyme activity in skeletal muscle. Circulation. 2005; 111: 1763–1770.
- Appell HJ, Duarte JA, Soares JM. Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int. J. Sports Med. 1997; 18: 157–160.
- Bianca RD, Wayman NS, McDonald MC, Pinto A, Sharpe MA, Cuzzocrea S, Chatterjee PK, Thiemermann C. Superoxide dismutase mimetic with catalase activity, EUK-134, attenuates the multiple organ injury and dysfunction caused by endotoxin in the rat. Med. Sci. Monit. 2002; 8: BR1–BR7.
- Kozakowska M, Pietraszak-Gremplewicz K, Jozkowicz A, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: Focus and antioxidant enzymes. J. Muscle Res. Cell Motil. 2015; 36: 377–393.
- Min W, Bin ZW, Quan ZB, Hui ZJ, Sheng FG. The signal transduction pathway of PKC/NF-κB/c-fos may be involved in the influence of high glucose on the cardiomyocytes of neonatal rats. Cardiovasc. Diabetol. 2009; 8: 8.
- Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India. 2004; 52: 794–804.
- Savikj M, Kostovski E, Lundell LS, Iversen PO, Massart J, Widegren U. Altered oxidative stress and antioxidant defence in skeletal muscle during the first year following spinal cord injury. Physiol. Rep. 2019; 7: e14218.
- Bhowmick S, D’Mello V, Caruso D, Abdul-Muneer PM. Traumatic brain injury-induced downregulation of Nrf2 activates inflammatory response and atopic cell death. J. Mol. Med. 2019; 97: 1627–1641.
- Yin F, Sancheti H, Cadenas E. Mitochondrial thiols in the regulation of cell death pathways. Antioxid. Redox. Signal. 2012; 17: 1714–1727.
- Qin Z, Reszka KJ, Fukai T, Weintraub NL. Extracellular superoxide dismutase (ecSOD) in vascular biology: An update on exogenous gene transfer and endogenous regulators of ecSOD. Transl. Res. 2008; 151: 68–78.
- Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid-biological activity and therapeutic potential. Pharmaco.l Rep. 2011; 63: 849–858.
- Packer L, Roy S, Sen CK. α-Lipoic acid: A metabolic antioxidant and potential redox modulator of transcription. Adv. Pharmacol. 1997; 38: 79–101.
- Camiolo G, Tibullo D, Giallongo C, Romano A, Parrinello NL, Musumeci G, Di Rosa M, Vicario N, Brundo MV, Amenta F, et al. α-Lipoic acid reduces iron-induced toxicity and oxidative stress in a model of iron overload. Int. J. Mol. Sci. 2019; 20: 609.
- Fei M, Xie Q, Zou Y, He R, Zhang Y, Wang J, Bo L, Li J, Deng X. Alpha-lipoic acid protects mice against concanavalin A-induced hepatitis by modulating cytokine secretion and reducing reactive oxygen species generation. Int. Immunopharmacol. 2016; 35: 53–60.
- Haleagrahara N, Jackie T, Chakravarthi S, Kulur AB. Protective effect of alpha-lipoic acid against lead acetate-induced oxidative stress in the bone marrow of rats. Int. J. Pharmacol. 2011; 7: 217–227.
- Zhao L, Liu Z, Jia H, Feng Z, Liu J, Li X. Lipoamide acts as an indirect antioxidant by simultaneously stimulating mitochondrial biogenesis and phase II antioxidant enzyme systems in ARPE-19 Cells. PLoS. One. 2015; 10: e0128502.
- Shen HH, Lam KK, Cheng PY, Kung CW, Chen SY, Lin PC, Chung MT, Lee YM. Alpha-lipoic acid prevents endotoxic shock and multiple organ dysfunction syndrome induced by endotoxemia in rats. Shock. 2015; 43: 405–411.
- Cadirci E, Altunkaynak BZ, Halici Z, Odabasoglu F, Uyanik MH, Gundogdu C, Suleyman H, Halici M, Albayrak M, Unal B. Alpha-lipoic acid as a potential target for the treatment of lung injury caused by cecal ligation and puncture-induced sepsis model in rats. Shock. 2010; 33: 479–484.
- Tian YF, He CT, Chen YT, Hsieh PS. Lipoic acid suppresses portal endotoxemia-induced steatohepatitis and pancreatic inflammation in rats. World. J. Gastroenterol. 2013; 19: 2761–2771.
- Goraca A, Piechota A, Huk-Kolega H. Effect of alpha-lipoic acid on LPS-induced oxidative stress in the heart. J. Physiol. Pharmacol. 2009; 60: 61–68.
- Kurhaluk N, Szarmach A, Zaitseva OV, Sliuta A, Kyriienko S, Winklewski PJ. Effects of melatonin on low-dose lipopolysaccharide-induced oxidative stress in mouse liver, muscle, and kidney. Can. J. Physiol. Pharmacol. 2018; 96: 1153–1160.
- Steckert AV, de Castro AA, Quevedo J, Dal-Pizzol F. Sepsis in the central nervous system and antioxidant strategies with N-acetylcysteine, vitamins and statins. Curr. Neurovasc. Res. 2014; 11: 83–90.