Pereira A.C., Ramos B., Reis A.C., Cunha M.V.: Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms, 2020; 8: 1380
Bi S., Hu F.S., Yu H.Y., Xu K.J., Zheng B.W., Ji Z.K., Li J.J., Deng M., Hu H.Y., Sheng J.F.: Nontuberculous mycobacterial osteomyelitis. Infect. Dis., 2015; 47: 673-685
Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., et al.: An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med., 2007; 175: 367-416
Burgess W., Margolis A., Gibbs S., Duarte R.S., Jackson M.: Disinfectant susceptibility profiling of glutaraldehyde-resistant nontuberculous mycobacteria. Infect. Control Hosp. Epidemiol., 2017; 38: 784-791
Moore J.E., Kruijshaar M.E., Ormerod L.P., Drobniewski F., Abubakar I.: Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995-2006. BMC Public Health, 2010; 10: 612
Shah N.M., Davidson J.A., Anderson L.F., Lalor M.K., Kim J., Thomas H.L., Lipman M., Abubakar I.: Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007-2012. BMC Infect. Dis., 2016; 16: 195
Diel R., Jacob J., Lampenius N., Loebinger M., Nienhaus A., Rabe K.F., Ringshausen F.C.: Burden of non-tuberculous mycobacterial pulmonary disease in Germany. Eur. Respir. J., 2017; 49: 1602109
Modrá H., Ulmann V., Caha J., Hübelová D., Konečný O., Svobodová J., Weston R.T., Pavlík I.: Socio-economic and environmental factors related to spatial differences in human non-tuberculous mycobacterial diseases in the Czech Republic. Int. J. Environ. Res. Public Health, 2019; 16: 3969
van der Werf M.J., Ködmön C., Katalinić-Janković V., Kummik T., Soini H., Richter E., Papaventsis D., Tortoli E., Perrin M., van Soolingen D., et al.: Inventory study of non-tuberculous mycobacteria in the European Union. BMC Infect. Dis., 2014; 14: 62
Ben Salah I., Cayrou C., Raoult D., Drancourt M.: Mycobacterium marseillense sp. nov., Mycobacterium timonense sp. nov. and Mycobacterium bouchedurhonense sp. nov., members of the Mycobacterium avium complex. Int. J. Syst. Evol. Microbiol., 2009; 59: 2803-2808
Tortoli E., Rindi L., Garcia M.J., Chiaradonna P., Dei R., Garzelli C., Kroppenstedt R.M., Lari N., Mattei R., Mariottini A., et al.: Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int. J. Syst. Evol. Microbiol., 2004; 54: 1277-1285
Hoefsloot W., van Ingen J., Andrejak C., Angeby K., Bauriaud R., Bemer P., Beylis N., Boeree M.J., Cacho J., Chihota V., et al.: The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: An NTM-NET collaborative study. Eur. Respir. J., 2013; 42: 1604-1613
Kwiatkowska S., Augustynowicz-Kopeć E., Korzeniewska-Koseła M., Filipczak D., Gruszczyński P., Zabost A., Klatt M., Sadkowska-Todys M.: Nontuberculous mycobacteria strains isolated from patients between 2013 and 2017 in Poland. Our data with respect to the global trends. Adv. Respir. Med., 2018; 86: 291-298
Gupta R.S., Lo B., Son J.: Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front. Microbiol., 2018; 9: 67
Tai A.Y., Athan E., Friedman N.D., Hughes A., Walton A., O’Brien D.P.: Increased severity and spread of Mycobacterium ulcerans, Southeastern Australia. Emerg. Infect. Dis., 2018; 24: 58-64
Slany M., Jezek P., Bodnarova M.: Fish tank granuloma caused by Mycobacterium marinum in two aquarists: Two case reports. Biomed. Res. Int., 2013; 2013: 161329
Lai C.C., Lee L.N., Ding L.W., Yu C.J., Hsueh P.R., Yang P.C.: Emergence of disseminated infections due to nontuberculous mycobacteria in non-HIV-infected patients, including immunocompetent and immunocompromised patients in a university hospital in Taiwan. J. Infect., 2006; 53: 77-84
Thomson R., Tolson C., Carter R., Coulter C., Huygens F., Hargreaves M.: Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J. Clin. Microbiol., 2013; 51: 3006-3011
Thomas V., McDonnell G.: Relationship between mycobacteria and amoebae: Ecological and epidemiological concerns. Lett. Appl. Microbiol., 2007; 45: 349-357
Yu H.S., Jeong H.J., Hong Y.C., Seol S.Y., Chung D.I., Kong H.H.: Natural occurrence of Mycobacterium as an endosymbiont of Acanthamoeba isolated from a contact lens storage case. Korean J. Parasitol., 2007; 45: 11-18
Marsollier L., Robert R., Aubry J., Saint André J.P., Kouakou H., Legras P., Manceau A.L., Mahaza C., Carbonnelle B.: Aquatic insects as a vector for Mycobacterium ulcerans. Appl. Environ. Microbiol., 2002; 68: 4623-4628
Shankar H., Singh S.V., Singh P.K., Singh A.V., Sohal J.S., Greenstein R.J.: Presence, characterization, and genotype profiles of Mycobacterium avium subspecies paratuberculosis from unpasteurized individual and pooled milk, commercial pasteurized milk, and milk products in India by culture, PCR, and PCR-REA methods. Int. J. Infect. Dis., 2010; 14: e121-e126
Bryant J.M., Grogono D.M., Rodriguez-Rincon D., Everall I., Brown K.P., Moreno P., Verma D., Hill E., Drijkoningen J., Gilligan P., et al.: Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science, 2016; 354: 751-757
Axson E.L., Bual N., Bloom C.I., Quint J.K.: Risk factors and secondary care utilisation in a primary care population with non-tuberculous mycobacterial disease in the UK. Eur. J. Clin. Microbiol. Infect. Dis., 2019; 38: 117-124
Mortaz E., Moloudizargari M., Varahram M., Movassaghi M., Garssen J., Kazempour Dizagie M., Mirsaeidi M., Adcock I.M.: What immunological defects predispose to non-tuberculosis mycobacterial infections? Iran. J. Allergy Asthma Immunol., 2018; 17: 100-109
Holt M.R., Kasperbauer S.H., Koelsch T.L., Daley C.L.: Similar characteristics of nontuberculous mycobacterial pulmonary disease in men and women. Eur. Respir. J., 2019; 54: 1900252
Liao T.L., Lin C.F., Chen Y.M., Liu H.J., Chen D.Y.: Risk factors and outcomes of nontuberculous mycobacterial disease among rheumatoid arthritis patients: A case-control study in a TB endemic area. Sci. Rep., 2016; 6: 29443
Mirsaeidi M., Sadikot R.T.: Gender susceptibility to mycobacterial infections in patients with non-CF bronchiectasis. Int. J. Mycobacteriol., 2015; 4: 92-96
Haworth C.S., Banks J., Capstick T., Fisher A.J., Gorsuch T., Laurenson I.F., Leitch A., Loebinger M.R., Milburn H.J., Nightingale M., et al.: British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax, 2017; 72: ii1-ii64
Schoenfeld N., Haas W., Richter E., Bauer T., Boes L., Castell S., Hauer B., Magdorf K., Matthiessen W., Mauch H., et al.: Recommendations of the German Central Committee against Tuberculosis (DZK) and the German Respiratory Society (DGP) for the diagnosis and treatment of non-tuberculous mycobacterioses. Pneumologie, 2016; 70: 250-276
Stephenson D., Perry A., Appleby M.R., Lee D., Davison J., Johnston A., Jones A.L., Nelson A., Bourke S.J., Thomas M.F., et al.: An evaluation of methods for the isolation of nontuberculous mycobacteria from patients with cystic fibrosis, bronchiectasis and patients assessed for lung transplantation. BMC Pulm. Med., 2019; 19: 19
Minnikin D.E., Minnikin S.M., Parlett J.H., Goodfellow M., Magnusson M.: Mycolic acid patterns of some species of Mycobacterium. Arch. Microbiol., 1984; 139: 225-231
Kellogg J.A., Bankert D.A., Withers G.S., Sweimler W., Kiehn T.E., Pfyffer G.E.: Application of the Sherlock Mycobacteria identification system using high-performance liquid chromatography in a clinical laboratory. J. Clin. Microbiol., 2001; 39: 964-970
Sharma B., Pal N., Malhotra B., Vyas L.: Evaluation of a rapid differentiation test for Mycobacterium tuberculosis from other Mycobacteria by selective inhibition with p-nitrobenzoic acid using MGIT 960. J. Lab. Physicians, 2010; 2: 89-92
Tortoli E., Mariottini A., Mazzarelli G.: Evaluation of INNO-LiPA MYCOBACTERIA v2: Improved reverse hybridization multiple DNA probe assay for mycobacterial identification. J. Clin. Microbiol., 2003; 41: 4418-4420
de Zwaan R., van Ingen J., van Soolingen D.: Utility of rpoB gene sequencing for identification of nontuberculous mycobacteria in the Netherlands. J. Clin. Microbiol., 2014; 52: 2544-2551
El Khéchine A., Couderc C., Flaudrops C., Raoult D., Drancourt M.: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One, 2011; 6: e24720
Saleeb P.G., Drake S.K., Murray P.R., Zelazny A.M.: Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol., 2011; 49: 1790-1794
Rodriguez-Temporal D., Perez-Risco D., Struzka E.A., Mas M., Alcaide F.: Evaluation of two protein extraction protocols based on freezing and mechanical disruption for identifying nontuberculous mycobacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry from liquid and solid cultures. J. Clin. Microbiol., 2018; 56: e01548-17
Cao Y., Wang L., Ma P., Fan W., Gu B., Ju S.: Accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of mycobacteria: A systematic review and meta-analysis. Sci. Rep., 2018; 8: 4131
Brown-Elliott B.A., Fritsche T.R., Olson B.J., Vasireddy S., Vasireddy R., Iakhiaeva E., Alame D., Wallace R.J., Branda J.A.: Comparison of two commercial matrix-assisted laser desorption/ ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for identification of nontuberculous mycobacteria. Am. J. Clin. Pathol., 2019; 152: 527-536
Pranada A.B., Witt E., Bienia M., Kostrzewa M., Timke M.: Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. J. Med. Microbiol., 2017; 66: 670-677
Murugaiyan J., Lewin A., Kamal E., Bakuła Z., van Ingen J., Ulmann V., Unzaga Barañano M.J., Humięcka J., Safianowska A., Roesler U.H., Jagielski T.: MALDI spectra database for rapid discrimination and subtyping of Mycobacterium kansasii. Front. Microbiol., 2018; 9: 587
Larrouy-Maumus G., Puzo G.: Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis, 2015; 95: 75-85
Chau T., Blade K., Da Silva J., Ghaffari A., Zelazny A., Olivier K.: High efficacy of high-dose nitric oxide and its synergistic effect with antibiotics against Mycobacterium abscessus. Eur. Respir. J., 2019; 54: OA4950
Koh W.J., Jeong B.H., Kim S.Y., Jeon K., Park K.U., Jhun B.W., Lee H., Park H.Y., Kim D.H., Huh H.J., et al.: Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin. Infect. Dis., 2017; 64: 309-316
Lee B.Y., Kim S., Hong Y., Lee S.D., Kim W.S., Kim D.S., Shim T.S., Jo K.W.: Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob. Agents Chemother., 2015; 59: 2972-2977
Nessar R., Cambau E., Reyrat J.M., Murray A., Gicquel B.: Mycobacterium abscessus A new antibiotic nightmare. J. Antimicrob. Chemother., 2012; 67: 810-818
van Ingen J., Boeree M.J., van Soolingen D., Mouton J.W.: Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist. Updat., 2012; 15: 149-161
Guillemin I., Jarlier V., Cambau E.: Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria. Antimicrob. Agents Chemother., 1998; 42: 2084-2088
Alcaide F., Pfyffer G.E., Telenti A.: Role of embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob. Agents Chemother., 1997; 41: 2270-2273
Soroka D., Dubée V., Soulier-Escrihuela O., Cuinet G., Hugonnet J.E., Gutmann L., Mainardi J.L., Arthur M.: Characterization of broad-spectrum Mycobacterium abscessus class A β-lactamase. J. Antimicrob. Chemother., 2014; 69: 691696
Rominski A., Selchow P., Becker K., Brülle J.K., Dal Molin M., Sander P.: Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes. J. Antimicrob. Chemother., 2017; 72: 2191-2200
Rominski A., Roditscheff A., Selchow P., Böttger E.C., Sander P.: Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J. Antimicrob. Chemother., 2017; 72: 376-384
Meier A., Heifets L., Wallace R.J.Jr., Zhang Y., Brown B.A., Sander P., Böttger E.C.: Molecular mechanisms of clarithromycin resistance in Mycobacterium avium Observation of multiple 23S rDNA mutations in a clonal population. J. Infect. Dis., 1996; 174: 354-360
Prammananan T., Sander P., Brown B.A., Frischkorn K., Onyi G.O., Zhang Y., Böttger E.C., Wallace R.J.Jr.: A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2‐deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J. Infect. Dis., 1998; 177: 1573-1581
Mohanty S., Jena P., Mehta R., Pati R., Banerjee B., Patil S., Sonawane A.: Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages. Antimicrob. Agents Chemother., 2013; 57: 3688-3698
Dąbrowska K., Abedon S.T.: Pharmacologically aware phage therapy: Pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev., 2019; 83: e00012-19
Górski A., Międzybrodzki R., Łobocka M., Głowacka-Rutkowska A., Bednarek A., Borysowski J., Jończyk-Matysiak E., Łusiak-Szelachowska M., Weber-Dąbrowska B., Bagińska N., et al.: Phage therapy: What have we learned? Viruses, 2018; 10: 288
Dedrick R.M., Guerrero-Bustamante C.A., Garlena R.A., Russell D.A., Ford K., Harris K., Gilmour K.C., Soothill J., Jacobs-Sera D., Schooley R.T., et al.: Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med., 2019; 25: 730-733
Choi S.R., Britigan B.E., Switzer B., Hoke T., Moran D., Narayanasamy P.: In vitro efficacy of free and nanoparticle formulations of gallium(iii) meso-tetraphenylporphyrine against Mycobacterium avium and Mycobacterium abscessus and gallium biodistribution in mice. Mol. Pharm., 2018; 15: 1215-1225
Bentur L., Gur M., Ashkenazi M., Livnat-Levanon G., Mizrahi M., Tal A., Ghaffari A., Geffen Y., Aviram M., Efrati O.: Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection. J. Cyst. Fibros., 2020; 19: 225-231
Zimmermann P., Finn A., Curtis N.: Does BCG vaccination protect against nontuberculous mycobacterial infection? A systematic review and meta-analysis. J. Infect. Dis., 2018; 218: 679-687