Briggs A.W., Stenzel U., Johnson P.L., Green R.E., Kelso J., Prüfer K., Meyer M., Krause J., Ronan M.T., Lachmann M., Pääbo S.: Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl.Acad. Sci. USA, 2007; 104: 14616-14621
Orlando L., Ginolhac A., Raghavan M., Vilstrup J., Rasmussen M., Magnussen K., Steinmann K.E., Kapranov P., Thompson J.F., Zazula G. i wsp.: True single-molecule DNA sequencing of a Pleistocene horse bone. Genome Res., 2011; 21: 1705-1719
Hofreiter M., Jaenicke V., Serre D., von Haeseler A., Pääbo S.: DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res., 2001; 29: 4793-4799
Gilbert M.T., Willerslev E., Hansen A.J., Barnes I., Rudbeck L., Lynnerup N., Cooper A.: Distribution patterns of postmortem damage in human mitochondrial DNA. Am. J. Hum. Genet., 2003; 72: 32-47
Allentoft M.E., Collins M., Harker D., Haile J., Oskam C.L., Hale M.L., Campos P.F., Samaniego J.A., Gilbert M.T., Willerslev E., Zhang G., Scofield R.P., Holdaway R.N., Bunce M.: The half-life of DNA in bone: Measuring decay kinetics in 158 dated fossils. Proc. Biol. Sci. R. Soc. B, 2012; 279: 4724-4733
van der Valk T., Pečnerová P., Díez-del-Molino D., Bergström A., Oppenheimer J., Hartmann S., Xenikoudakis G., Thomas J.A., Dehasque M., Sağlıcan E. i wsp.: Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 2021; 591: 265-269
Sawyer S., Krause J., Guschanski K., Savolainen V., Pääbo S.: Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One, 2012; 7: e34131
Green R.E., Krause J., Briggs A.W., Maricic T., Stenzel U., Kircher M., Patterson N., Li H., Zhai W., Fritz M.H. i wsp.: A draft sequence of the Neandertal genome. Science, 2010; 328: 710-722
Poinar H.N., Schwarz C., Qi J., Shapiro B., Macphee R.D., Buigues B., Tikhonov A., Huson D.H., Tomsho L.P., Auch A., Rampp M., Miller W., Schuster S.C.: Metagenomics to paleogenomics: Large-scale sequencing of mammoth DNA. Science, 2006; 311: 392-394
Haile J., Holdaway R., Oliver K., Bunce M., Gilbert M.T., Nielsen R., Munch K., Ho S.Y., Shapiro B., Willerslev E.: Ancient DNA chronology within sediment deposits: Are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol., 2007; 24: 982-989
Barta J.L., Monroe C., Kemp B.M.: Further evaluation of the efficacy of contamination removal from bone surfaces. Forensic Sci. Int., 2013; 231: 340-348
Malmström H., Svensson E.M., Gilbert M.T., Willerslev E., Götherström A., Holmlund G.: More on contamination: The use of asymmetric molecular behavior to identify authentic ancient human DNA. Mol. Biol. Evol., 2007; 24: 998-1004
Sirak K.A., Fernandes D.M., Cheronet O., Novak M., Gamarra B., Balassa T., Bernert Z., Cséki A., Dani J., Gallina J.Z. i wsp.: A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. BioTechniques, 2017; 62: 283-289
Alberti F., Gonzalez J., Paijmans J.L., Basler N., Preick M., Henneberger K., Trinks A., Rabeder G., Conard N.J., Münzel S.C. i wsp.: Optimized DNA sampling of ancient bones using computed tomography scans. Mol. Ecol. Resour., 2018; 18: 1196-1208
Higuchi R., Bowman B., Freiberger M., Ryder O.A., Wilson A.C.: DNA sequences from the quagga, an extinct member of the horse family. Nature, 1984; 312: 282-284
Vreeland R.H., Rosenzweig W.D., Powers D.W.: Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature, 2000; 407: 897-900
Krings M., Geisert H., Schmitz R.W., Krainitzki H., Pääbo S.: DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proc. Natl.Acad. Sci. USA, 1999; 96: 5581-5585
Krings M., Stone A., Schmitz R.W., Krainitzki H., Stoneking M., Pääbo S.: Neandertal DNA sequences and the origin of modern humans. Cell, 1997; 90: 19-30
Nesheva D.: Aspects of ancient mitochondrial DNA analysis in different populations for understanding human evolution. Balkan J. Med. Genet., 2014; 17: 5-14
Krause J., Dear P.H., Pollack J.L., Slatkin M., Spriggs H., Barnes I., Lister A.M., Ebersberger I., Pääbo S., Hofreiter M.: Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 2006; 439: 724-727
Hollmer M.: Roche to close 454 Life Sciences as it reduces gene sequencing focus. https://www.fiercebiotech.com/medical-devices/roche-to-close-454-life-sciences-as-it-reduces-gene-sequencing-focus (08.04.2021)
Lalueza-Fox C., Gigli E., de la Rasilla M., Fortea J., Rosas A., Bertranpetit J., Krause J.: Genetic characterization of the ABO blood group in Neandertals. BMC Evol. Biol., 2008; 8: 342
Doan K., Mackiewicz P., Sandoval-Castellanos E., Stefaniak K., Ridush B., Dalén L., Węgleński P., Stankovic A.: The history of Crimean red deer population and Cervus phylogeography in Eurasia. Zool. J. Linnean Soc., 2017; 183: 208-225
Miller W., Drautz D.I., Ratan A., Pusey B., Qi J., Lesk A.M., Tomsho L.P., Packard M.D., Zhao F., Sher A. i wsp.: Sequencing the nuclear genome of the extinct woolly mammoth. Nature, 2008; 456: 387-390
Baca M., Popović D., Panagiotopoulou H., Marciszak A., Krajcarz M., Krajcarz M.T., Makowiecki D., Węgleński P., Nadachowski A.: Human-mediated dispersal of cats in the Neolithic Central Europe. Heredity, 2018; 121: 557-563
Hofreiter M., Paijmans J.L., Goodchild H., Speller C.F., Barlow A., Fortes G.G., Thomas J.A., Ludwig A., Collins M.J.: The future of ancient DNA: Technical advances and conceptual shifts. Bioessays, 2015; 37: 284-293
Meyer M., Arsuaga J.L., de Filippo C., Nagel S., Aximu-Petri A., Nickel B., Martínez I., Gracia A., Bermúdez de Castro J.M., Carbonell E. i wsp.: Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature, 2016; 531: 504-507
Meyer M., Kircher M., Gansauge M.T., Li H., Racimo F., Mallick S., Schraiber J.G., Jay F., Prüfer K., de Filippo C. i wsp.: A highcoverage genome sequence from an archaic Denisovan individual. Science, 2012; 338: 222-226
Zhang D., Xia H., Chen F., Li B., Slon V., Cheng T., Yang R., Jacobs Z., Dai Q., Massilani D. i wsp.: Denisovan DNA in late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science, 2020; 370: 584-587
Prüfer K., Racimo F., Patterson N., Jay F., Sankararaman S., Sawyer S., Heinze A., Renaud G., Sudmant P.H., de Filippo C. i wsp.: The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 2014; 505: 43-49
Kuhlwilm M., Gronau I., Hubisz M.J., de Filippo C., Prado-Martinez J., Kircher M., Fu Q., Burbano H.A., Lalueza-Fox C., de la Rasilla M. i wsp.: Ancient gene flow from early modern humans into Eastern Neanderthals. Nature, 2016; 530: 429-433
Fu Q., Posth C., Hajdinjak M., Petr M., Mallick S., Fernandes D., Furtwängler A., Haak W., Meyer M., Mittnik A. i wsp.: The genetic history of Ice Age Europe. Nature, 2016; 534: 200-205
Mendum T.A., Taylor G.M., Donoghue H.D., Wu H., Szalontai C., Marcsik A., Molnár E., Pálfi G., Stewart G.R.: The genome sequence of a SNP type 3K strain of Mycobacterium leprae isolated from a seventh-century Hungarian case of lepromatous leprosy. Int. J. Osteoarchaeol., 2018; 28: 439-447
Détroit F., Mijares A.S., Corny J., Daver G., Zanolli C., Dizon E., Robles E., Grün R., Piper P.J.: A new species of Homo from the late Pleistocene of the Philippines. Nature, 2019; 568: 181-186
Willman J.C., Ginter B., Hernando R., Lozano M., Sobczyk K., Stefański D., Szczepanek A., Wertz K., Wojtal P., Zając M., Zarzecka-Szubińska K., Valde-Nowak P.: Paleobiology and taphonomy of a middle Paleolithic Neandertal tooth from Ciemna Cave, Southern Poland. J. Paleo. Arch., 2019; 2: 359-377
Picin A., Hajdinjak M., Nowaczewska W., Benazzi S., Urbanowski M., Marciszak A., Fewlass H., Socha P., Stefaniak K., Żarski M. i wsp.: New perspectives on Neanderthal dispersal and turnover from Stajnia Cave (Poland). Sci. Rep., 2020; 10: 14778
Klein Goldewijk K., Beusen A., Janssen P.: Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene, 2010; 20: 565-573
Stiller M., Knapp M., Stenzel U., Hofreiter M., Meyer M.: Direct multiplex sequencing (DMPS) – a novel method for targeted highthroughput sequencing of ancient and highly degraded DNA. Genome Res., 2009; 19: 1843-1848
Palkopoulou E., Dalén L., Lister A.M., Vartanyan S., Sablin M., Sher A., Edmark V.N., Brandström M.D., Germonpré M., Barnes I., Thomas J.A.: Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B, 2013; 280: 20131910
Drucker D.G., Rivals F., Münzel S.C., Bocherens H.: Stable isotope and microwear investigation on the mammoth (Mammuthus primigenius) of Kraków Spadzista: Insights into diet and environment. W: A Gravettian Site in Southern Poland – Kraków Spadzista, red.: P. Wojtal, J.Wilczyński, G.Haynes. ISEA PAS, Kraków 2015, 189-202
Fellows Yates J.A., Drucker D.G., Reiter E., Heumos S., Welker F., Münzel S.C., Wojtal P., Lázničková-Galetová M., Conard N.J., Herbig A. i wsp.: Central European woolly mammoth population dynamics: Insights from late Pleistocene mitochondrial genomes. Sci Rep, 2017; 7: 17714
Palkopoulou E., Lipson M., Mallick S., Nielsen S., Rohland N., Baleka S., Karpinski E., Ivancevic A.M., To T.H., Kortschak R.D. i wsp.: A comprehensive genomic history of extinct and living elephants. Proc. Natl.Acad. Sci. USA, 2018; 115: E2566-E2574
Hofreiter M., Münzel S., Conard N.J., Pollack J., Slatkin M., Weiss G., Pääbo S.: Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Curr. Biol., 2007; 17: R122-R123
Yamagata K., Nagai K., Miyamoto H., Anzai M., Kato H., Miyamoto K., Kurosaka S., Azuma R., Kolodeznikov I.I., Protopopov A.V. i wsp.: Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging. Sci. Rep., 2019; 9: 4050
Comas I., Coscolla M., Luo T., Borrell S., Holt K.E., Kato-Maeda M., Parkhill J., Malla B., Berg S., Thwaites G. i wsp.: Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet., 2013; 45: 1176-1182
Hershberg R., Lipatov M., Small P.M., Sheffer H., Niemann S., Homolka S., Roach J.C., Kremer K., Petrov D.A., Feldman M.W., Gagneux S.: High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol., 2008; 6: e311
Hershkovitz I., Donoghue H.D., Minnikin D.E., May H., Lee O.Y., Feldman M., Galili E., Spigelman M., Rothschild B.M., Bar-Gal G.K.: Tuberculosis origin: The Neolithic scenario. Tuberculosis, 2015; 95: S122-S126
Taylor G.M., Murphy E., Hopkins R., Rutland P., Chistov Y.: First report of Mycobacterium bovis DNA in human remains from the Iron Age. Microbiology, 2007; 153: 1243-1249
Schuenemann V.J., Avanzi C., Krause-Kyora B., Seitz A., Herbig A., Inskip S., Bonazzi M., Reiter E., Urban C., Dangvard Pedersen D. i wsp.: Ancient genomes reveal a high diversity of Mycobacteri-um leprae in medieval Europe. PLoS Pathog., 2018; 14: e1006997
Yuan Y., Wen Y., You Y., Xing Y., Li H., Weng X., Wu N., Liu S., Zhang S., Zhang W., Zhang Y.: Characterization of Mycobacterium leprae genotypes in China – Identification of a new polymorphism C251T in the 16S rRNA gene. PLoS One, 2015; 10: e0133268
Donoghue H.D., Marcsik A., Matheson C., Vernon K., Nuorala E., Molto J.E., Greenblatt C.L., Spigelman M.: Co-infection of My-cobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: A possible explanation for the historical decline of leprosy. Proc. Biol. Sci. R. Soc. B, 2005; 272: 389-394
Donoghue H.D., Michael Taylor G., Marcsik A., Molnár E., Pálfi G., Pap I., Teschler-Nicola M., Pinhasi R., Erdal Y.S., Velemínsky P. i wsp.: A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. Infect. Genet. Evol., 2015; 31: 250-256
Donoghue H.D.: Tuberculosis and leprosy associated with historical human population movements in Europe and beyond – an overview based on mycobacterial ancient DNA. Ann. Hum. Biol., 2019; 46: 120-128
Mordechai L., Eisenberg M., Newfield T.P., Izdebski A., Kay J.E., Poinar H.: The Justinianic Plague: An inconsequential pandemic? Proc. Natl. Acad. Sci. USA, 2019; 116: 25546-25554
Prokopowicz D.: Medycyna geograficzna ze szczególnym uwzględnieniem medycyny tropikalnej. Choroby zakaźne i pasożytnicze, red.: J. Cianciara, J. Juszczyk. Czelej Sp. z o.o., Lublin 2007, 436
Sebbane F., Gardner D., Long D., Gowen B.B., Hinnebusch B.J.: Kinetics of disease progression and host response in a rat model of bubonic plague. Am. J. Pathol., 2005; 166: 1427-1439
Rasmussen S., Allentoft M.E., Nielsen K., Orlando L., Sikora M., Sjögren K.G., Pedersen A.G., Schubert M., Van Dam A., Kapel C.M. i wsp.: Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell, 2015; 163: 571-582
Bos K.I., Schuenemann V.J., Golding G.B., Burbano H.A., Waglechner N., Coombes B.K., McPhee J.B., DeWitte S.N., Meyer M., Schmedes S. i wsp.: A draft genome of Yersinia pestis from victims of the Black Death. Nature, 2011; 478: 506-510
Feldman M., Harbeck M., Keller M., Spyrou M.A., Rott A., Trautmann B., Scholz H.C., Päffgen B., Peters J., McCormick M. i wsp.: A high-coverage Yersinia pestis genome from a sixth-century Justinianic plague victim. Mol. Biol. Evol., 2016; 33: 2911-2923
Wagner D.M., Klunk J., Harbeck M., Devault A., Waglechner N., Sahl J.W., Enk J., Birdsell D.N., Kuch M., Lumibao C. i wsp.: Yersinia pestis and the Plague of Justinian 541-543 AD: A genomic analysis. Lancet Infect. Dis., 2014; 14: 319-326
Haensch S., Bianucci R., Signoli M., Rajerison M., Schultz M., Kacki S., Vermunt M., Weston D.A., Hurst D., Achtman M. i wsp.: Distinct clones of Yersinia pestis caused the black death. PLoS Pathog., 2010; 6: e1001134
Namouchi A., Guellil M., Kersten O., Hänsch S., Ottoni C., Schmid B.V., Pacciani E., Quaglia L., Vermunt M., Bauer E.L. i wsp.: Integrative approach using Yersinia pestis genomes to revisit the historical landscape of plague during the Medieval Period. Proc. Natl.Acad. Sci. USA, 2018; 115: E11790-E11797
Spyrou M.A., Tukhbatova R.I., Feldman M., Drath J., Kacki S., Beltrán de Heredia J., Arnold S., Sitdikov A.G., Castex D., Wahl J. i wsp.: Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe, 2016; 19: 874-881
Morozova I., Kasianov A., Bruskin S., Neukamm J., Molak M., Batieva E., Pudło A., Rühli F.J., Schuenemann V.J.: New ancient Eastern European Yersinia pestis genomes illuminate the dispersal of plague in Europe. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2020; 375: 20190569
Płoszaj T., Jedrychowska-Dańska K., Zamerska A., Lewandowska M., Bojarski J., Chudziak W., Drozd-Lipinska A., Robaszkiewicz A., Witas H.W.: Analysis of maternal lineage structure of individuals from chamber graves placed in medieval cemetery in Kaldus, Central Poland. Homo, 2020; 71: 43-50
Płoszaj T., Jędrychowska-Dańska K., Masłowska A., Kozłowski T., Chudziak W., Bojarski J., Robaszkiewicz A., Witas H.W.: Analysis of medieval mtDNA from Napole cemetery provides new insights into the early history of Polish state. Ann. Hum. Biol., 2017; 44: 91-94