Have a personal or library account? Click to login

Eclipse retinopathy injury scale (ERIS): A classification of acute macular damage resulting from unprotected solar eclipse viewing

Open Access
|Jan 2022

References

  1. Morner N.A., Lind B.G. (2018). Astronomy and Sun cult in the Swedish Bronze Age. Int. J. Astron. Astrophys., 8: 143-162.
  2. Henriksson G. (2017). The acceleration of the Moon and the Universe – the mass of the gravitation. Adv. Astrophysics, 2017; 2: 184-196.
  3. Michaelides M., Rajendram R., Marshall J., Keightley S. (2001). Eclipse retinopathy. Eye, 15: 148-151.
  4. Eccles J.C., Flynn A.J. (1943). Experimental photo-retinitis. Med. J. Aust., 16: 339-342.
  5. McKechnie N.M., Foulds W.S. (1980). Recovery of the rabbit retina after light damage (preliminary observations). Albrecht Von Graefes Arch. Clin. Exp. Ophthalmol., 212: 271-283.
  6. Friedman E., Kuwabara T. (1968). The retinal pigment epithelium. IV. The damaging effects of radiant energy. Arch. Ophthalmol., 80: 265-279.
  7. Parver L.M., Auker C.R., Fine B.S. (1983). Observations on monkey eyes exposed to light from an operating microscope. Ophthalmology, 90: 964-972.
  8. Hope-Ross M.W., Mahon G.J., Gardiner T.A., Archer D.B. (1993). Ultrastructural findings in solar retinopathy. Eye, 7: 29-33.
  9. Youssef P.N., Sheibani N., Albert D.M. (2011). Retinal light toxicity. Eye, 25: 1-14.
  10. Wu J., Seregard S., Algvere P.V. (2006). Photochemical damage of the retina. Surv. Ophthalmol., 51: 461-481.
  11. White T.J., Mainster M.A., Wilson P.W., Tips J.H. (1971). Chorioretinal temperature increases from solar observation. Bull. Math. Biophys., 33: 1-17.
  12. Wu C.Y., Jansen M.E., Andrade J., Chui T.Y.P., Do A.T., Rosen R.B., Deobhakta A. (2018). Acute solar retinopathy imaged with adaptive optics, optical coherence tomography angiography, and en face optical coherence tomography. JAMA Ophthalmol., 136: 82-85.
  13. Merino-Suárez M.L., Belmonte-Martin J., Rodrigo-Auría F., Pérez-Cambrodí R.J., Piñero D.P. (2017). Optical coherence tomography and autofluoresceinography changes in solar retinopathy. Can. J. Ophthalmol., 52: e67-e71.
  14. Czepita M., Machalińska A., Czepita D. (2017). Near-infrared fundus autofluorescence imaging in solar retinopathy. GMS Ophthalmol. Cases, 7: Doc05.
  15. Gutiérrez-Trashorras A.J., Villicaña-Ortiz E., Álvarez-Álvarez E., Gonzáles-Caballín J.M., Xiberta-Bernat J., Suarez-López M.J. (2018). Attenuation processes of solar radiation. Application to the quantification of direct and diffuse solar irradiances on horizontal surfaces in Mexico by means of an overall atmospheric transmittance. Renewable and Sustainable Energy Rev., 81: 93-106.
  16. Honsberg C.B., Bowden S.G. (2021). Photovoltaics Education Website. http://www.pveducation.org (13.01.2021).
  17. HM Nautical Almanac Office. (2021). Eclipse Online. http://astro.ukho.gov.uk/eclipse/ (13.01.2021).
Language: English
Page range: 1005 - 1011
Submitted on: Jan 16, 2021
Accepted on: Aug 17, 2021
Published on: Jan 17, 2022
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Maciej Czepita, Edyta Podlewska-Gaca, Damian Czepita, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.